Document Type : Full Research Paper

Authors

1 Assistant Professor, Biomechanics Group, Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 M.Sc. Student, Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

3 B.Sc., Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

Understanding the mechanism of artificial disc degeneration using animal models is useful to study the regenerative techniques in hope of finding potential therapeutic strategies. For any type of potential therapeutic techniques, first we need to have the degenerated model. Disc degeneration can be mimicked in animal studies using needle puncture. However, the detailed mechanical response of the artificial degenerated disc using needle puncture under physiological diurnal activities has not been analyzed well.Hence, reverse finite element analyses combined with in-vitro experiments were used in this study to find the mechanical properties of intact (N=8) and injured discs using needle puncture (N=8). Afterward, specimen-specific FE models for 16 discs were simulated during physiological diurnal activity. The results showed that the variation of axial displacement, intradiscal pressure, and total fluid exchangein intact discs were significantly higher than the injured ones after 24h. But the maximum axial stress within disc was significantly higher in injured group. The achieved results are correlated with previous human cadaver data for natural disc degeneration. Therefore, it is concluded that the G-16needle puncture injury is a simple and cost-effective methodology which can be used to mimic the degeneration mechanism in animal models.

Keywords

Main Subjects

[1]     B. Freeman, J. Kuliwaba, M.Zarrinkalam, C. Jones, C. Shu, ,C. Colloca, J. Melrose, A. Mulaibrahimovic, S. Gronthos, A.Zannettino, “Allogeneic mesenchymal stem cells improve indices of lumbar intervertebral disc degeneration without site specificity of injection in an ovine model” Osteoarthritis and Cartilage, vol. 23, pp. A81, 2015.
[2]  W. S. Marras, S. A. Lavender, S. E. Leurgans, F. A. Fathallah, S. A. Ferguson, W. G. Allread, "Biomechanical risk factors for occupationally related low back disorders", Ergonomics, 38, pp. 377–410, 1995.
[3] S. Roberts, J. Menage, S. Sivan, J. P. Urban,"Bovine explant model of degeneration of the intervertebral disc". BMC Musculoskelet Disord,9, pp. 24, 2008.
[4]     Y.C.Hsu, Y.W.Kuo, Y.-C.Chang, M. Nikkhoo, J.-L Wang, “Rheological and dynamic integrity of simulated degenerated disc and consequences after cross-linker augmentation”,Spine,38(23), pp. E1446-E1453, 2013.
[5]     J. Zeckser, M. Wolff, J. Tucker, J. Goodwin, S. Slavin, “MultipotentMesenchymal Stem Cell Treatment for Discogenic Low Back Pain and Disc Degeneration”,Stem Cells International, Vol. 2016, pp. 1-13, 2016.
[6]     S.Y. Chuang,L.C. Lin, Y.C. Tsai, J.L. Wang, “Exogenous crosslinking recovers the functional integrity of intervertebral disc secondary to a stab injury”,Journal of Biomedical Materials Research Part A, 92(1), pp. 297-302, 2010.
[7]     M.W. Kroeber, F. Unglaub, H. Wang, C. Schmid, M. Thomsen, A. Nerlich, W. Richter, “New in vivo animal model to create intervertebral disc degeneration and to investigate the effects of therapeutic strategies to stimulate disc regeneration”, Spine, 27(23), pp. 2684-2690, 2002.
[8]     S.Y. Chuang, L.C. Lin, Y.C. Tsai, J.L. Wang, “Exogenous crosslinking recovers the functional integrity of intervertebral disc secondary to a stab injury”. Journal of Biomedical Materials Research Part A, 92(1), pp. 297-302, 2010.
[9]  A.C. Issy, V. Castania, M. Castania, C.E.G. Salmon, M.H. Nogueira-Barbosa, E. Del Bel, “Experimental model of intervertebral disc degeneration by needle puncture in Wistar rats”,Braz J Med Biol Res, 46( 3 ),pp. 235-244, 2013.
[10] M. Nikkhoo, Y.-C.Hsu, M. Haghpanahi, M. Parnianpour and J.-L.Wang. “Material Property Identification of Artificial Degenerated Intervertebral Disc Models — Comparison of Inverse Poroelastic Finite Element Analysis with Biphasic Closed Form Solution”, Journal of Mechanics,29, pp. 589-597, 2013.
[11]   Y.W. Kuo, J.L. Wang, “Rheology of intervertebral disc: an ex vivo study on the effect of loading history, loading magnitude, fatigue loading, and disc degeneration”, Spine (Phila Pa 1976), 35(16), pp. E743-752, 2010.
[12]   م. نیکخو، م. حق‌پناهی، ج.ل. وانگ، م. پرنیان­پور،«مدلسازی المان محدود تقارن محوری پروالاستیک دیسک بین­مهره­ای برای بررسی رفتار بیومکانیکی ستون فقرات کمری» فصلنامه علمی پژوهشی مهندسی پزشکی زیستی، دوره 5، شماره 1، صفحه 21-32، سال 1390.
[13]   M. Nikkhoo, Y.C. Hsu, M. Haghpanahi, M. Parnianpour, J.L. Wang, “A meta-model analysis of a finite element simulation for defining poroelastic properties of intervertebral discs”, ProcInstMechEng H, Vol 227, No. 6, pp. 672-82, 2013.
[14]   H.Schmidt, A. Shirazi-Adl, F. Galbusera, H. J. Wilke, “Response analysis of the lumbar spine during regular daily activities--a finite element analysis”. J Biomech,43 (10), pp. 1849-1856 2010.
[15]   M. A. Adams, D. S. McNally, P. Dolan, “Stress' distributions inside intervertebral discs - The effects of age and degeneration”. J Bone Joint Surg Br,78B (6), pp. 965-972, 1996.
[16]   J. C. Beckstein, S. Sen, , T. P. Schaer, E. J. Vresilovic, D. M. Elliott, “Comparison of animal discs used in disc research to human lumbar disc: axial compression mechanics and glycosaminoglycan content”, Spine,33 (6), pp. E166-173 2008.