Document Type : Full Research Paper


1 Post-Doctoral Research Fellow, School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

2 M.Sc. Student, Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran

3 Associate Professor, Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran



In brain disorders, both the brain structural and functional connectivity are altered and cause different behavioral symptoms. Recognizing these variations can help us to diagnose, treat, and control its progression. Schizophrenia is one of these mental disorders that widely affects the brain structure and function. Investigation of brain variations in this disease has commonly been based on voxel-wise analysis or region-based studies. The aim of this study is to evaluate brain structure and function alterations in schizophrenia patients comparing to healthy control from the brain connectivity perspective. For this purpose, using the statistical test method, a comparison was made between all the structural and functional connections in the brain of 92 healthy individuals and 37 schizophrenia patients obtained from diffusion tensor imaging (DTI) and functional Magnetic Resonance Imaging (fMRI) respectively. The findings of this study indicate that the number of altered edges in the brain functional network of patients is about 4 times more than the number of varied structural connections, which indicates the high impact of this disorder on brain function. Also, examination of the number of altered edges connected to each node, the affected areas in this disease were identified and it was shown that the schizophrenia patients’ brain has changed in parts of the brain subnetworks related to the default mode network (DMN), attention, somatomotor and vision networks. It was also shown that the altered brain structural connections of patients are involved in the areas of the superior frontal gyrus, temporal gyrus and part of the occipital cortex which are mostly shown relative increasing of the structural connectivity weights. The results of this study indicate the widespread effect of this disorder on the brain and suggest that the occurrence of some abnormal behaviors in schizophrenia patients may be due to some increased structural connectivity weights.


Main Subjects

  1. J. Friston and C. D. Frith, “Schizophrenia: a disconnection syndrome,” Clin Neurosci, vol. 3, no. 2, pp. 89–97, 1995.
  2. S. Hamilton et al., “Alterations in functional activation in euthymic bipolar disorder and schizophrenia during a working memory task,” Hum. Brain Mapp., vol. 30, no. 12, pp. 3958–3969, 2009, doi: 10.1002/hbm.20820.
  3. Singh et al., “Motor function deficits in schizophrenia: An fMRI and VBM study,” Neuroradiology, vol. 56, no. 5, pp. 413–422, 2014, doi: 10.1007/s00234-014-1325-3.
  4. J. Calhoun VD, Adali T, Pearlson GD, “A method for making group inferences from functional MRI data using independent component analysis.,” Hum Brain Mapp, vol. 14, no. 3, pp. 140–51, 2001, doi: 10.1089/neu.2014.3723.
  5. Camchong, A. W. MacDonald, C. Bell, B. A. Mueller, and K. O. Lim, “Altered functional and anatomical connectivity in schizophrenia,” Schizophr. Bull., vol. 37, no. 3, pp. 640–650, 2011, doi: 10.1093/schbul/sbp131.
  6. Skåtun KC, Kaufmann T, Doan NT, Alnæs D, Córdova-Palomera A, Jönsson EG, Fatouros-Bergman H, Flyckt L; KaSP, Melle I, Andreassen OA, Agartz I, Westlye LT. “Consistent Functional Connectivity Alterations in Schizophrenia Spectrum Disorder: A Multisite Study”. Schizophr Bull. 2017 Jul 1;43(4):914-924. doi: 10.1093/schbul/sbw145. PMID: 27872268; PMCID: PMC5515107.
  7. Siyi Li1, Na Hu, Wenjing Zhang, Bo Tao, Jing Dai, Yao Gong, Youguo Tan5, Duanfang Cai and Su Lui. “Dysconnectivity of Multiple Brain Networks in Schizophrenia: A Meta-Analysis of Resting-State Functional Connectivity.” Frontiers in psychiatry vol. 10 482. 12 Jul. 2019, doi:10.3389/fpsyt.2019.00482
  8. A. JAMEA et al., “Altered default mode network activity and cortical thickness as vulnerability indicators for SCZ: A preliminary resting state MRI study,” Eur. Rev. Med. Pharmacol. Sci., vol. 25, no. 2, pp. 669–677, 2021, doi: 10.26355/eurrev_202101_24628.
  9. van den Heuvel MP, Fornito A. “Brain networks in schizophrenia. ” Neuropsychol Rev. 2014 Mar;24(1):32-48. doi: 10.1007/s11065-014-9248-7. Epub 2014 Feb 6. PMID: 24500505..
  10. Micheloyannis, “Graph-based network analysis in schizophrenia,” World J. Psychiatry, vol. 2, no. 1, 2012, doi: 10.5498/wjp.v2.i1.EDITORIAL.
  11. Yu, E. A. Allen, J. Sui, M. R. Arbabshirani, and V. D. Calhoun, “Brain connectivity networks in schizophrenia underlying resting state functional magnetic resonance imaging,” Curr. Top. Med. Chem., vol. 12, no. 21, pp. 2415–2425, 2015.
  12. Liu et al., “Disrupted small-world networks in schizophrenia,” Brain, vol. 131, no. 4, pp. 945–961, 2008, doi: 10.1093/brain/awn018.
  13. E. Lynall et al., “Functional connectivity and brain networks in schizophrenia,” J. Neurosci., vol. 30, no. 28, pp. 9477–9487, 2010, doi: 10.1523/JNEUROSCI.0333-10.2010.
  14. Algunaid, Rami F., Ali H. Algumaei, M. Rushdi and I. Yassine. “Schizophrenic patient identification using graph-theoretic features of resting-state fMRI data.” Biomed. Signal Process. Control. 43 (2018): 289-299.
  15. Olejarczyk E, Jernajczyk W. “Graph-based analysis of brain connectivity in schizophrenia.” PLoS One. 2017 Nov 30;12(11):e0188629. doi: 10.1371/journal.pone.0188629. PMID: 29190759; PMCID: PMC5708839.
  16. L. Wheeler and A. N. Voineskos, “A review of structural neuroimaging in schizophrenia: from connectivity to connectomics,” Front. Hum. Neurosci., vol. 8, no. August, pp. 1–18, 2014, doi: 10.3389/fnhum.2014.00653.
  17. Knöchel et al., “Association between white matter fiber integrity and subclinical psychotic symptoms in schizophrenia patients and unaffected relatives,” Schizophr. Res., vol. 140, no. 1–3, pp. 129–135, 2012, doi: 10.1016/j.schres.2012.06.001.
  18. Fujino et al., “Impaired empathic abilities and reduced white matter integrity in schizophrenia,” Prog. Neuro-Psychopharmacology Biol. Psychiatry, vol. 48, pp. 117–123, 2014, doi: 10.1016/j.pnpbp.2013.09.018.
  19. S. Bassett, E. Bullmore, B. A. Verchinski, V. S. Mattay, D. R. Weinberger, and A. Meyer-Lindenberg, “Hierarchical organization of human cortical networks in health and Schizophrenia,” J. Neurosci., vol. 28, no. 37, pp. 9239–9248, 2008, doi: 10.1523/JNEUROSCI.1929-08.2008.
  20. Zalesky et al., “Disrupted axonal fiber connectivity in schizophrenia,” Biol. Psychiatry, vol. 69, no. 1, pp. 80–89, 2011, doi: 10.1016/j.biopsych.2010.08.022.
  21. Zhang et al., “Abnormal topological organization of structural brain networks in schizophrenia,” Schizophr. Res., vol. 141, no. 2–3, pp. 109–118, 2012, doi: 10.1016/j.schres.2012.08.021.
  22. کیوان فرد، ف.، نصیرایی مقدم، ع.، 1398. آنالیز توام اتصالات کارکردی و ساختاری مغز در بیماران اسکیزوفرنی با رویکرد شبکه ای. مهندسی پزشکی زیستی, (2)13, 147-158. doi: 10.22041/ijbme.2019.102379.1453.
  23. Cammoun et al., “Mapping the human connectome at multiple scales with diffusion spectrum MRI,” J. Neurosci. Methods, vol. 203, no. 2, pp. 386–397, 2012, doi: 10.1016/j.jneumeth.2011.09.031.
  24. K. Jones, “Studying connections in the living human brain with diffusion MRI,” cortex, vol. 44, no. 8, pp. 936–952, 2008.
  25. Jenkinson, C. F. Beckmann, T. E. J. Behrens, M. W. Woolrich, and S. M. Smith, “Fsl,” Neuroimage, vol. 62, no. 2, pp. 782–790, 2012.
  26. Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980.
  27. Jenkinson, P. Bannister, M. Brady, and S. Smith, “Improved optimization for the robust and accurate linear registration and motion correction of brain images,” Neuroimage, vol. 17, no. 2, pp. 825–841, 2002.
  28. Caruyer et al., “Diffusion MRI Signal Reconstruction with Continuity Constraint and Optimal Regularization To cite this version : HAL Id : hal-00711883 Di ff usion MRI Signal Reconstruction with Continuity Constraint and Optimal,” 2012.
  29. E. Suárez, R. D. Markello, R. F. Betzel, and B. Misic, “Linking Structure and Function in Macroscale Brain Networks,” Trends in Cognitive Sciences, vol. 24, no. 4. pp. 302–315, 2020, doi: 10.1016/j.tics.2020.01.008.
  30. M. Lawrie, A. M. McIntosh, J. Hall, D. G. C. Owens, and E. C. Johnstone, “Brain structure and function changes during the development of schizophrenia: The evidence from studies of subjects at increased genetic risk,” Schizophr. Bull., vol. 34, no. 2, pp. 330–340, 2008, doi: 10.1093/schbul/sbm158.
  31. L. Beason-Held et al., “Changes in brain function occur years before the onset of cognitive impairment,” J. Neurosci., vol. 33, no. 46, pp. 18008–18014, 2013, doi: 10.1523/JNEUROSCI.1402-13.2013.
  32. Li et al., “Dysconnectivity of multiple brain networks in schizophrenia: A meta-analysis of resting-state functional connectivity,” Front. Psychiatry, vol. 10, no. JULY, pp. 1–11, 2019, doi: 10.3389/fpsyt.2019.00482.
  33. Li et al., “Brain-Wide Analysis of Functional Connectivity in First-Episode and Chronic Stages of Schizophrenia,” Oxford Heal. NHS Found. Trust, vol. 43, no. 2, pp. 436–448, 2017, doi: 10.1093/schbul/sbw099.
  34. Xiao, S. Wang, J. Liu, T. Meng, Y. He, and X. Luo, “Abnormalities of localized connectivity in schizophrenia patients and their unaffected relatives: A meta-analysis of resting-state functional magnetic resonance imaging studies,” Neuropsychiatr. Dis. Treat., vol. 13, pp. 467–475, 2017, doi: 10.2147/NDT.S126678.
  35. Bracht et al., “Increased structural connectivity of the medial forebrain bundle in schizophrenia spectrum disorders is associated with delusions of paranoid threat and grandiosity,” NeuroImage Clin., vol. 24, no. June, p. 102044, 2019, doi: 10.1016/j.nicl.2019.102044.
  36. Ji et al., “Increased and Decreased Superficial White Matter Structural Connectivity in Schizophrenia and Bipolar Disorder,” Schizophr. Bull., vol. 45, no. 6, pp. 1367–1378, 2019, doi: 10.1093/schbul/sbz015.
  37. Eryilmaz, H., Tanner, A., Ho, N. et al. Disrupted Working Memory Circuitry in Schizophrenia: Disentangling fMRI Markers of Core Pathology vs Other Aspects of Impaired Performance. Neuropsychopharmacol 41, 2411–2420 (2016).
  38. D. Bandeira, J. L. Barouh, I. D. Bandeira, and L. Quarantini, “Analysis of the superior temporal gyrus as a possible biomarker in schizophrenia using voxel-based morphometry of the brain magnetic resonance imaging: A comprehensive review,” CNS Spectr., pp. 1–7, Jan. 2019, doi: 10.1017/S1092852919001810.
  39. Ohi et al., “Structural alterations of the superior temporal gyrus in schizophrenia: Detailed subregional differences,” Eur. Psychiatry, vol. 35, pp. 25–31, Mar. 2016, doi: 10.1016/j.eurpsy.2016.02.002.
  40. Collin, M. A. de Reus, W. Cahn, H. E. Hulshoff Pol, R. S. Kahn, and M. P. van den Heuvel, “Disturbed grey matter coupling in schizophrenia,” Eur. Neuropsychopharmacol., vol. 23, no. 1, pp. 46–54, 2013, doi: 10.1016/j.euroneuro.2012.09.001.
  41. H. Karlsgodt, D. Sun, and T. D. Cannon, “Structural and functional brain abnormalities in schizophrenia,” Current Directions in Psychological Science, vol. 19, no. 4. pp. 226–231, 2010, doi: 10.1177/0963721410377601.