Document Type : Full Research Paper


1 M.Sc., Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

2 Assistant Professor, Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran



Early detection of fatigue helps to improve the quality and effectiveness of neurofeedback training. Diagnosis of fatigue using the EEG signal of participants during neurofeedback training in 10 training sessions is reviewed in this paper. Neurofeedback training has two different neurofeedback training protocols called protocols one and two. The first protocol is a training feature, a combination of frequency and non-frequency features, but the second protocol only includes frequency features. In the first fatigue time protocol, the slope trend of the power changes of the second low alpha sub-band in the OZ channel is decreasing and the permutation entropy in the FZ channel is increasing. The slope of the score changes is also decreasing. In the second protocol, the slope trend of power changes is the second low alpha sub-band in the OZ channel and decreases the score, in other words, the lack of feature change in line with the goal of neurofeedback training is due to fatigue and the participant cannot score. The results are based on the power slope trend of the second lower alpha sub-band and permutation entropy, which indicates that fatigue occurs for one participant in the first protocol and for three participants in the second protocol.


Main Subjects

  1. B. Emami, N. Nourafza, S. Fekri–Ershad, "A method for diagnosing of Alzheimer's disease using the brain emotional learning algorithm and wavelet feature", Journal of Intelligent Procedures in Electrical Technology, vol. 13, no. 52, pp. 65-78, March 2023.
  2. مریم مقدم، فرزاد توحیدخواه، گلناز بغدادی، "مدل شناختی ناوبری: تعامل هیپوکمپ و پیش پیشانی،، مهندسی پزشکی زیستی، سال: 15، ش.: 2، ص.: 111-120، 1400.
  3. Sikander, S. Anwar, "Driver fatigue detection systems: A review", IEEE Trans. on Intelligent Transportation Systems, vol. 20, no. 6, pp. 2339-2352, June 2019.
  4. Liu, Y. Liu, K. Chen, L. Wang, Z. Li, Q. Ai, L. Ma, “Research on channel selection and multi-feature fusion of EEG signals for mental fatigue detection “, Entropy, vol. 23, Article Number: 457, 2021.
  5. M. Heasman et al., "Detection of fatigue in the isometric electrical activation of paralyzed hand muscles of persons with tetraplegia", IEEE Trans. on Rehabilitation Engineering, vol. 8, no. 3, pp. 286-296, Sept. 2000.
  6. Zhang, J. Sun, X. Gao, “The effect of fatigue on brain connectivity networks”, Brain Science Advances, vol. 6, no. 2, pp. 120-131, Aug. 2020.
  7. Jin, Q. Yang, S. Liu, C. Zhang and P. Li, "Electromagnetic stimulation of the acoustic emission for fatigue crack detection of the sheet metal", IEEE Trans. on Applied Superconductivity, vol. 20, no. 3, pp. 1848-1851, June 2010.
  8. Li, Y. Gong, Z. Ren, "A fatigue driving detection algorithm based on facial multi-feature fusion", IEEE Access, vol. 8, pp. 101244-101259, 2020.
  9. Lazreg, O. Hubert, "Detection of fatigue limit thanks to piezomagnetic measurements", IEEE Trans. on Magnetics, vol. 46, no. 2, pp. 556-559, Feb. 2010.
  10. Zhang, F. Wang, "Exercise fatigue detection algorithm based on video image information extraction", IEEE Access, vol. 8, pp. 199696-199709, 2020.
  11. Zhuang, Z. Kehua, J. Wang, Q. Chen, "Driver fatigue detection method based on eye states with pupil and iris segmentation", IEEE Access, vol. 8, pp. 173440-173449, 2020.
  12. S.P. Pamplona, J. Heldner, R. Langner, Y. Koush, L. Michels, S. Ionta, F. Scharnowski, C.E.G. Salmon, “Network-based fMRI-neurofeedback training of sustained attention”, NeuroImage, vol. 221, Article Number: 117194, Nov. 2020.
  13. R. Trambaiolli, S.H. Kohl, D.E.J. Linden, D.M.A. Mehler, “Neurofeedback training in major depressive disorder: A systematic review of clinical efficacy, study quality and reporting practices”, Neuroscience and Biobehavioral Reviews, vol. 125, pp. 33-56, June 2021.
  14. Tang, Z. Chen, Y. Jiang, C. Zhu, A. Chen, “From reversal to normal: Robust improvement in conflict adaptation through real-time functional near infrared spectroscopy-based neurofeedback training”, Neuropsychologia, vol. 157, Article Number: 107866, July 2021.
  15. L. Wu, S.C. Fang, S.C. Chen, C.J. Tai, P.S. Tsai, “Effects of neurofeedback on fibromyalgia: A randomized controlled trial”, Pain Management Nursing, vol. 22, no. 6, pp. 755-763, Dec. 2021.
  16. Shourie, M. Firoozabadi, K. Badie. "Analysis of EEG signals related to artists and nonartists during visual perception, mental imagery, and rest using approximate entropy", BioMed Research International, vol. 2014, Article ID: 764382, pp. 1-10, July 2014.
  17. Dashti, M, Khezri, “Recognition of motor imagery based on dynamic features of EEG signals”, Journal of Intelligent Procedures in Electrical Technology, vol. 11, no. 43, 13-27, Dec. 2020.
  18. بهناز شیخ الاسلامی، قاسم صادقی بجستانی، رضا یعقوبی کریموی، ریحانه ظریفیان، "تفکیک افراد سالم و ADHD در دوران کودکی و بزرگسالی با استفاده از فضای فاز EEG مرتب شده توسط قطعات پوانکاره شعاعی"، مهندسی پزشکی زیستی، سال: 15، ش.: 1، ص.: 21-30، 1400.
  19. Karimi-Shahraki, M. Khezri, "Identification of attention deficit hyperactivity disorder patients using wavelet-based features of EEG signals", Journal of Intelligent Procedures in Electrical Technology, vol. 12, no. 47, pp. 1-11, Dec. 2021.
  20. Dorvashi, N. Behzadfar, G. Shahgholian, “Classification of alcoholic and non-alcoholic individuals based on frequency and non-frequency features of electroencephalogram signal”, Journal Iranian Journal of Biomedical Engineering, vol. 14, no. 2, pp. 121-130, Summer 2020.
  21. Li, et al. “The impact of mental fatigue on brain activity: a comparative study both in resting state and task state using EEG”, BMC Neuroscience, vol. 21, pp. 1-9, May. 2020.
  22. Tian, Y. Wang, G. Dong, W. Pei, H. Chen, "Mental fatigue estimation using EEG in a vigilance task and resting states", Proceeding of the IEEE/EMBC, pp. 1980-1983, Honolulu, HI, USA, July 2018.
  23. M. Strijkstra et al., “Subjective sleepiness correlates negatively with global alpha (8-12 Hz) and positively with central frontal theta (4-8 Hz) frequencies in the human resting awake electroencephalogram”, Neurosci Letter, vol. 340, no. 1, pp. 17-20, April 2003.
  24. A. Putilov, O.G. Donskaya, “Alpha attenuation soon after closing the eyes as an objective indicator of sleepiness”, Clin Exp Pharmacol Physiol, vol. 41m no. 12, pp. 956-964, Dec. 2014.
  25. ندا بهزادفر، "طراحی چارچوب ماشین نوروفیدبک مبتنی بر بی­نظمی سیگنال مغزی جهت بهسازی حافظه"، پایان­نامه کارشناسی­ارشد، دانشگاه تربیت مدرس، 1395.
  26. Luo, T. Qiu, C. Liu, P. Huang, "Research on fatigue driving detection using forehead EEG based on adaptive multi-scale entropy", Biomedical Signal Processing and Cont­rol, vol. 51, pp. 50-58, 2019.
  27. Bazanova, L. Aftanas, “Relationships between learnability and individual indices of EEG alpha activity”, Annals of General Psychiatry. Vol. 5, no. 1, Article ID: S182, Feb. 2006.
  28. Klimesch, "EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis", Brain Research Reviews, vol. 29, no. 2-3, pp. 169-195, 1999.
  29. Migliorati et al., "Individual alpha frequency predicts perceived visuotactile simultaneity", Journal of Cognitive Neuroscience, vol. 32, no. 1, pp. 1-11, Jan. 2020.
  30. R. Cross, A. Santamaria, A.W. Corcoran, A. Chatburn, P.hillip M. Alday, Scott Coussens, Mark J. Kohler, “Individual alpha frequency modulates sleep-related emotional memory consolidation”, Neuropsychologia, vol. 148, Article Number: 107660, Nov. 2020.
  31. Pei, G. Guo, D. Chen, R. Yang, Z. Shi, S. Wang, J. Zhang, J. Wu, T.Y. BrainKilter, “A real-time EEG analysis platform for neurofeedback design and training”, IEEE Access, vol. 8, pp. 57661-57673, Jan. 2020.