Document Type : Full Research Paper

Authors

1 Ph.D. Student, Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran,

2 Associate Professor, Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

3 Professor, Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

4 Postdoctoral Fellow, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland

5 Professor, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland

10.22041/ijbme.2022.544471.1738

Abstract

Keratoconus (KC) is a non-inflammatory and degenerative disease of the cornea. It is manifested by the formation of cone-shaped regions accompanying severe eyesight issues. Implantation of intrastromal corneal ring segments (ICRS)‎ is a popular treatment to improve visual acuity. Controversies exist over restoring functionality of different ICRSs. In this study, numerical models were used to quantify the mechanical and optical effects of different ICRSs on a reference cornea with central cone. Finite element (FE) simulations were used to simulate the implantation of two classes of ICRS sets common in clinical settings: a) single segment arcs of 360º (1×360), 350º (1×350), 320º (1×320), and, b) symmetric double-segment arcs of 160º each (2×160), 150º each (2×150), 120º each (2×120), and 90º each (2×90). Results showed that implantation of symmetric double-segment arcs caused the symmetric displacement and stress distribution contours on both anterior and posterior corneal surfaces. This study shows the potential impact of a detailed mechanical analysis of ICRS placement and represents a first step toward the development of an evidence-based nomogram for the different implantation techniques and the optimization of the surgical intervention based on patient-specific modeling.

Keywords

Main Subjects

  1. Flecha-Lescún, B. Calvo, J. Zurita, and M. Á.Ariza-Gracia,“Template-based methodology for the simulation of intracorneal segment ring implantation in human corneas,” Biomech. Model. Mechanobiol., vol. 17, no. 4, pp. 923–938, 2018, doi: 10.1007/s10237-018-1013-z.
  2. Cavas-Martínez, D. G. Fernández-Pacheco, D. Parras, F. J. F. Cañavate, L. Bataille, and J. Alió, “Study and characterization of morphogeometric parameters to assist diagnosis of keratoconus,” Biomed. Eng. Online, vol. 17, no. S1, pp. 1–18, 2018, doi: 10.1186/s12938-018-0564-7.
  3. P. Studer, H. Riedwyl, C. A. Amstutz, J. V. M. Hanson, and P. Büchler, “Patient-specific finite-element simulation of the human cornea: A clinical validation study on cataract surgery,” J. Biomech., vol. 46, no. 4, pp. 751–758, 2013, doi: 10.1016/j.jbiomech.2012.11.018.
  4. T. Andreassen, A. tJORTH SIMONSEN, and H. Oxlund, “Biomechanical Properties of Keratoconus and Normal Corneas,” Exp. Eye Res, vol. 31, pp. 435–441, 1980.
  5. Daxer, A. Ettl, and R. Hörantner, “Long-term results of MyoRing treatment of keratoconus,” J. Optom., vol. 10, no. 2, pp. 123–129, 2017, doi: 10.1016/j.optom.2016.01.002.
  6. Ambekar, K. C. Toussaint, and A. Wagoner Johnson, “The effect of keratoconus on the structural, mechanical, and optical properties of the cornea,” J. Mech. Behav. Biomed. Mater., vol. 4, no. 3, pp. 223–236, 2011, doi: 10.1016/j.jmbbm.2010.09.014.
  7. Barbara, A. M. Turnbul, P. Hossain, D. F. Anderson, and A. Barbara, “Epidemiology of Keratoconus,” in Keratoconus: Recent advances in diagnosis and treatment, J. L. Alió, Ed. Springer International Publishing Switzerland, 2017, pp. 13–24.
  8. Hashemi et al., “Prevalence of keratoconus in a population-based study in shahroud,” Cornea, vol. 32, no. 11, pp. 1441–1445, 2013, doi: 10.1097/ICO.0b013e3182a0d014.
  9. H. Kennedy, W. M. Bourne, and J. A. Dyer, “A 48-year clinical and epidemiologic study of keratoconus,” Am. J. Ophthalmol., vol. 101, no. 3, pp. 267–273, 1986, doi: 10.1016/0002-9394(86)90817-2.
  10. Colin, B. Cochener, G. Savary, and F. Malet, “Correcting keratoconus with intracorneal rings,” J. Cataract Refract. Surg., vol. 26, no. 8, pp. 1117–1122, 2000, doi: 10.1016/S0886-3350(00)00451-X.
  11. Kılıç, A., del Barrio, J. L. A., and Estrada, “Intracorneal ring segments: Types, indications and outcomes,” in Keratoconus, J. L. Alió, Ed. Springer, 2017.
  12. N. Khan and P. S. Shiakolas, “To study the effects of intrastromal corneal ring geometry and surgical conditions on the postsurgical outcomes through finite element analysis,” J. Mech. Med. Biol., vol. 16, no. 7, pp. 1–16, 2016, doi: 10.1142/S0219519416501013.
  13. Kling and S. Marcos, “Finite-element modeling of intrastromal ring segment implantation into a hyperelastic cornea,” Investig. Ophthalmol. Vis. Sci., vol. 54, no. 1, pp. 881–889, 2013, doi: 10.1167/iovs.12-10852.
  14. Á. Ariza-Gracia, J. Flecha-Lescún, P. Büchler, and B. Calvo, “Corneal biomechanics after intrastromal ring surgery: Optomechanical in silico assessment,” Transl. Vis. Sci. Technol., vol. 9, no. 11, pp. 1–16, 2020, doi: 10.1167/tvst.9.11.26.
  15. M. Nejad, C. Foster, and D. Gongal, “Finite element modelling of cornea mechanics: A review,” Arq. Bras. Oftalmol., vol. 77, no. 1, pp. 60–65, 2014, doi: 10.5935/0004-2749.20140016.
  16. Pandolfi, A. and Manganiello, F., 2006. A model for the human cornea: constitutive formulation and numerical analysis. Biomechanics and modeling in mechanobiology, 5(4), pp.237-246.
  17. Kling, N. Bekesi, C. Dorronsoro, D. Pascual, and S. Marcos, “Corneal viscoelastic properties from finite-element analysis of in vivo air-puff deformation,” PLoS One, vol. 9, no. 8, 2014, doi: 10.1371/journal.pone.0104904.
  18. Smith, ABAQUS/Standard User’s Manual, Version 6.9. Dassault Systèmes Simulia Corp., 2009.
  19. Eliasy et al., “Characterization of cone size and centre in keratoconic corneas,” 2020.
  20. Kılıç and J. L. Alió del Barrio, “Intracorneal ring segments: Complications,” in Keratoconus: Recent Advances in Diagnosis and Treatment, 2017, pp. 209–218.
  21. P. Piñero and J. L. Alio, “Intracorneal ring segments in ectatic corneal disease - a review,” Clin. Exp. Ophthalmol., vol. 38, no. 2, pp. 154–167, 2010, doi: 10.1111/j.1442-9071.2010.02197.x.
  22. Versaci and G. Vestri, “Instrumentation for Diagnosis of Keratoconus,” in Keratoconus: Recent advances in diagnosis and treatment, J. L. Alió, Ed. Springer International Publishing Switzerland, 2017, pp. 53–64.
  23. W. Belin and S. S. Khachikian, “An introduction to understanding elevation-based topography: How elevation data are displayed - A review,” Clin. Exp. Ophthalmol., vol. 37, no. 1, pp. 14–29, 2009, doi: 10.1111/j.1442-9071.2008.01821.x.
  24. Michael Smith, ABAQUS/Standard User’s Manual, Version 6.9. Dassault Syst{\`e}mes Simulia Corp, 2009.
  25. Ferrara and L. Torquetti, “Clinical outcomes after implantation of a new intrastromal corneal ring with a 210-degree arc length,” J. Cataract Refract. Surg., vol. 35, no. 9, pp. 1604–1608, 2009, doi: 10.1016/j.jcrs.2009.04.035.