Document Type : Full Research Paper


1 Ph.D candidate, Biomedical engineering Department, Research laboratory of Biomedical signals and sensors, Iran University of Sciences and Technology (I.U.S.T), Tehran, Iran

2 Assistant Professor, Biomedical engineering Department, Research laboratory of Biomedical signals and sensors, Iran University of Sciences and Technology (I.U.S.T), Tehran, Iran

3 Associate Professor, Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran

4 Associat Professor, Department of Radiation Oncology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran


Cancer is the third leading cause of death in Iran after cardiac diseases and car accidents. Mathematical and computational models are great help to better understand cancer related phenomena. It may even improve common therapies or introduce new therapies. In this paper, a new multiscale cellular automata model of tumor growth based on the tumor micro-environment is introduced. Two separate square lattices are presumed for metabolic and cellular spaces. One of the following four states can be devoted to each cell in the cellular lattice: proliferating cancer, non- proliferating cancer, necrotic, and normal cells. Changing the cell's state and tumor growth is discussed in this lattice. However, production/consumption, and the diffusion of nutrients (oxygen and glucose) and also waste products including lactic acid are studied in the metabolic lattice. In this study, we determined the stochastic rules of altering the states of each cell based on the concentration rates of nutrients and lactic acid. The growth fraction and necrotic fraction were used as output parameters beside a 2-D graphical display of growth. The changes in the level of nutrients in the metabolic lattice and the effect of acidity on the growth of tumor have been reported in this paper. Our simulations faithfully reproduce the in vivo experimental observations reported for cholangiocarcinoma.


Main Subjects

[1]   R. Durrett, “Cancer Modeling: A Personal Perspective”, Notices of the AMS, Vol. 60, No. 3, 2013.
[2]   K. A.  Rejniak, A. R. Anderson, “Hybrid Models of Tumor Growth”, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, Vol. 3, Issue 1, pp 115–125, January/February 2011, DOI: 10.1002/wsbm.102.
[3]   W. Materi, D. S. Wishart, “Computational Systems Biology in Cancer: Modeling Methods and Applications”, Gene Regulation and Systems Biology, Vol. 1, pp. 91–110, 2007.
[4]   T. S. Deisboeck, Z. Wang, P. Macklin, and V. Cristini, “Multiscale cancer modeling”, Annual review of biomedical engineering, Vol. 13, 2011.
[5]   C. S. Hogea, B. T. Murray, J. A. Sethian, “Simulating complex tumor dynamics from avascular to vascular growth using a general level-set method”,  journal of mathematical biology, Vol. 53, No. 1, pp. 86-134, 2006.
[6]   Y. Kato, S. Ozawa, C. Miyamoto, Y. Maehata, A. Suzuki, T. Maeda, Y. Baba, “Acidic extracellular microenvironment and cancer”, Cancer cell international. Vol. 13, No. 1, pp.2013 Sep 3.
[7]   X. Zhang, A. de Milito, M. H. Olofsson, J. Gullbo, P. D’Arcy, S. Linder, “Targeting Mitochondrial Function to Treat Quiescent Tumor Cells in Solid Tumors”, International journal of molecular sciences, Vol. 16, No. 11, pp. 27313-26, 2015.
[8]   Duke University Medical Center. "Lactic Acid Found To Fuel Tumors." ScienceDaily. ScienceDaily, 23 November 2008.
[9]   R. A. Gatenby, H. B. Kessler, J. S. Rosenblum, L. R. Coia, P. J. Moldofsky, W. H. Hartz, G. J. Broder, “Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy”, International Journal of Radiation Oncology* Biology* Physics, Vol. 14, No. 5, pp. 831-8, 1988 May 31.
[10]C. Diepart, J. Verrax, P. B. Calderon, O. Feron, B. F. Jordan, B. Gallez, “Comparison of methods for measuring oxygen consumption in tumor cells in vitro”, Analytical biochemistry, Vol. 396, No. 2, pp. 250-6, 2010 Jan 15.
[11]R. E. Durand, P. L.Olive, “Irradiation of multi-cell spheroids with fast neutrons versus X-rays: A qualitative difference in sub-lethal damage repair capacity or kinetics”, International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, Vol. 30, No. 6, pp. 589-92, 1976 Jan 1.
[12]R. A. Gatenby, E. T. Gawlinski, “A reaction-diffusion model of cancer invasion”, Cancer research, Vol. 56, No. 24, pp.  5745-53, 1996 Dec 15.
[13]K. Smallbone, D. J. Gavaghan, R. A. Gatenby, P.K. Maini, “The role of acidity in solid tumour growth and invasion”, Journal of Theoretical Biology, Vol. 235, No. 4, pp.  476-84, 2005 Aug 21.
[14]A. R. Kansal, S. Torquato, G. R. Harsh, E. A. Chiocca, and T. S. Deisboeck, “Simulated brain tumour growth dynamics using a three-dimensional cellular automaton”, Journal of Theoretical Biology, Vol. 203, No. 4., pp. 367-382, 21 April 2000, DOI:10.1006/jtbi.2000.2000
[15]S. Torquato, “Toward an Ising model of cancer and beyond”, Physical Biology, Vol. 8, No. 1, 2011, DOI:10.1088/1478-3975/8/1/015017.
[16]S. H. Sabzpoushan, F. Pourhasanzade, “A cellular Automata-based Model for simulating restitution Property in a Single Heart cell”, Journal of Medical Signals and Sensors, Vol. 1, No. 1, 2011.
[17]F. Pourhasanzade, S. H. Sabzpoushan, “A new cellular automata model of cardiac action potential propagation based on summation of excited neighbors”, World Academy of Science, Engineering and Technology, Vol. 44, pp. 917-921, 2010.
[18]سبزپوشان، پورحسن زاده، آگین. مدل سازی چهار بعدی تومور مغزی GBM با استفاده از اتوماتای سلولی. مجله مهندسی پزشکی زیستی. دوره هفتم. شماره 1. بهار 92. 63-75.
[19]J. Moreira, A. Deutsch, “Cellular automaton models of tumor development: a critical review”, Advances in Complex Systems, Vol. 5(02n03), pp. 247-267, 2002.
[20]J. E. Schmitz, A. R. Kansal, S. Torquato, “A cellular automaton model of brain tumor treatment and resistance”, Computational and Mathematical Methods in Medicine, Vol. 4, No. 4, pp. 223-239, 2002.
[21]A. C. Burton, “Rate of growth of solid tumours as a problem of diffusion”, Growth, Vol. 30, pp. 159–176, 1966.
[22]غفاری ع، عزیزی ک، امینی م، "مدل سازی ریاضی سرطان و طراحی پروتکل شیمی درمانی بهینه با استفاده از معیار پایداری لیاپانوف"، مجله دانشکده پزشکی اصفهان، سال بیست و نهم، شماره174 ، ویژه نامه مهندسی پزشکی، 1390
[23]W. Dṻchting, “A model of disturbed self-reproducing cell systems”, Biomathematics and Cell Kinetics, Vol. 2, pp. 133-142, 1978.
[24]A. S. Qi, X. Zheng, C. Y. Du, B. S. An, “A cellular automaton model of cancerous growth." Journal of theoretical biology, Vol. 161, No. 1, pp. 1-12, 1993.
[25]A. A. Patel, E. T. Gawlinski, S. K. Lemieux, & R. A. Gatenby, “A cellular automaton model of early tumor growth and invasion: the effects of native tissue vascularity and increased anaerobic tumor metabolism”, Journal of Theoretical Biology, Vol. 213, No. 3, pp. 315-331, 2001.
[26]S.  Dormann, and A. Deutsch, Modeling of self-organized avascular tumour growth with a hybrid cellular automaton”, In silico biology, Vol. 2, No. 3, pp.393-406, 2002.
[27]P. Gerlee, A. R. A. Anderson, “An Evolutionary Hybrid Cellular Automaton Model of Solid”, Journal of Theoretical Biology, Vol. 246, No. 4, 583–603, 2007.
[28]D. Rodrigues, J. Louçã, “Cellcom: A Hybrid Cellular Automaton Model of Tumorous Tissue Formation and Growth, Master program in Complexity Sciences”, (ISCTE/FCUL, Lisbon).
[29]D. Hanahan, R. A.Weinberg, “The hallmarks of cancer”, Cell, Vol. 100, No. 1, pp. 57 – 70, 2000.
[30]R. Abbott, “CancerSim: A computer-based simulation of Hanahan and Weinberg's Hallmarks of Cancer” (Doctoral dissertation, The University of New Mexico)
[31]Q. Wang, P. Vaupel, S. I. Ziegler, K. Shi, “Exploring the quantitative relationship between metabolism and enzymatic phenotype by physiological modeling of glucose metabolism and lactate oxidation in solid tumors”, Physics in medicine and biology, Vol. 60, No. 6, p. 2547, 2015 Mar 11.
[32]R.P. Araujo, D.L.S. McElwain, “A history of the study of solid tumour growth: the contribution of mathematical modeling”. Bulletin of Mathematical Biology, Vol. 66, pp. 1039–1091, 2004.
[33]H. M. Byrne, T. Alarcon., Owen M. R., Webb S. D., Maini P. K., “Modelling aspects of cancer dynamics: a review”, Philos Trans A Math Phys Eng Sci., Vol. 364, pp. 1563-1578, 2006.
[34]M. Chaplain, “Modelling aspects of cancer growth: insight from mathematical and numerical analysis and computational simulation”. In Lecture notes in mathematics: Vol. 1940. Multiscale problems in the life sciences, pp. 147–200. Berlin: Springer, 2008.
[35]H. Hatzikirou, G. Breier, A. Deutsch, “Cellular automaton models for tumor invasion”. Encyclopedia of Complexity and Systems Science, pp. 1-18, 2008.
[36]L.B. Edelman, J.A. Eddy, N.D. Price, “In silico models of cancer”, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, Vol. 2, No. 4, pp. 438-59, 2010 Jul 1.
[37]E. Bavafaye-Haghighi, MJ Yazdanpanah, B. Kalaghchi, H. Soltanian-Zadeh, “Multiscale cancer modeling: In the line of fast simulation and chemotherapy”, Mathematical and Computer Modelling, Vol. 49, No. 7, pp. 1449-64, 2009.

[38]ایرانمنش ف،  نظری م، "مدل سازی پدیده رشد تومور فاقد رگ با رویکرد مدل ساختاری با استفاده از روش المان محدود"، مهندسی مکانیک مدرس. دوره 17، شماره 3، خرداد 1396، صفحه 115-122

[39]پورحسن زاده ف، سبزپوشان س ح، علیزاده ع م، عصمتی ا، چمنی ر. "مدل رشد تومور جامد بدون رگ بر اساس چرخه سلولی با استفاده از اتوماتای سلولی". مجله مدل سازی پیشرفته ریاضی. شماره 6، دوره 2، صفحه 55-74. 1395
[40]F. Pourhasanzade, SH Sabzpoushan, AM Alizadeh, E. Esmati, “An agent-based model of avascular tumor growth: Immune response tendency to prevent cancer development”, SIMULATION, 2017, p. 0037549717699072.
[41]M. Ghaemi, A. Shahrokhi.,”Combination of The Cellular Potts Model and Lattice Gas Cellular Automata For Simulating The Avascular Cancer Growth”, ACRI'06 Proceedings of the 7th international conference on Cellular Automata for Research and Industry, pp. 297-303, 2006, DOI: 10.1007/11861201_35

[42]روغنی یزدی، نقوی، حسینی مدل سازی و شبیه‌سازی فرآیند رشد عروقی تومور، فصلنامه مهندسی پزشکی زیستی، دوره 9، شماره 2، تابستان 1394، صفحه 143-161

[43]F. Hosseini, N. Naghavi, “Two dimensional mathematical model of tumor angiogenesis: coupling of avascular growth and vascularization”, Iranian Journal of Medical Physics, Vol. 12, No. 3, pp. 145-66, 2015.
[44]F. Hosseini, N. Naghavi, “Modelling Tumor-induced Angiogenesis: Combination of Stochastic Sprout Spacing and Sprout Progression”, Journal of Biomedical Physics and Engineering. 2016 May 2.
[45]N. Naghavi, FS Hosseini, M. Sardarabadi, H. Kalani, “Simulation of tumor induced angiogenesis using an analytical adaptive modeling including dynamic sprouting and blood flow modeling”, Microvascular research. Vol. 107, pp. 51-64, 2016.
[46]M. Sefidgar, M. Soltani, K. Raahemifar, M. Sadeghi, H. Bazmara, M. Bazargan, MM. Naeenian, “Numerical modeling of drug delivery in a dynamic solid tumor microvasculature”, Microvascular research, Vol. 99, pp. 43-56, 2015.
[47]N. Kazmi, M.A. Hossain, R.M. Phillips, M.A. Al-Mamun, R. Bass, “Avascular tumour growth dynamics and the constraints of protein binding for drug transportation”, Journal of Theoretical Biology, Vol. 313, pp. 142-52, 2012 Nov 21.
[48]T. Alarcon, H.M. Byrne, P. K. Maini, “A multiple scale model for tumor growth”, Simulation, Vol. 3, pp. 440–475, 2004.
[49]S. H. Dairkee, S. H. Deng, M. R. Stampfer, R. M. Waldman, and H. S. Smith, “Selective cell culture of primary breast cancer”, Cancer Research, Vol.35, pp. 2516–2519, 1995.
[50]J. J. Casciari, S. V. Sotirchos, R. M. Sutherland, “Variation in tumor growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH”, Journal of cellular physiology, Vol. 151, pp. 386–394, 1992.
[51]J. P. Sutherland, “Role of necrosis in regulating the growth saturation of multicellular spheroids”, Cancer Research, Vol. 48, pp. 2432–2439, 1988.
[52]R. Venkatasubramanian, M. A. Henson, N. S. Forbes, “Incorporating energy metabolism into a growth model of multicellular tumor spheroids”, Journal of Theoretical Biology, Vol. 242, No. 2, pp. 440-453, 2006.
[53]J. J. Casciari, S. V. Sotirchos, R. M. Sutherland, “Glucose diffusivity in multicellular tumor spheroids”, Cancer Research, Vol. 48, pp. 3905–3909, 1988.
[54]C. Crone, D. G. Levitt, “Capillary permeability to small solutes”, In Handbook of Physiology: A critical, comprehensive presentation of physiological knowledge and concepts, Section 2: The Cardiovascular System, Vol. IV: Microcirculation, Part 1 (Renkin, E. M. and Michel, C. C., eds). p. 414 and pp. 434-437.Bethesda, ML: American Physiological Society, 1984.
[55]J. Chorowski, J.M. Zurada, “Extracting rules from neural networks as decision diagrams”, IEEE Trans. Neural Networks, Vol. 99, pp. 1–12, 2011.
[56]J. P. Freyer, P. L. Schor, A. G. Saponara, “Partial purification of a protein growth inhibitor from multicellular spheroids”, Biochem. Biophys. Res. Commun, Vol. 152, pp. 463–468, 1988.
[57]J. P. Freyer, R. M. Sutherland, “Regulation of growth saturation and development of necrosis in emt6/ro multicellular spheroids by the glucose and oxygen supply”, Cancer Research, Vol. 46, pp. 3513–3520, 1986. [PubMed: 3708583]
[58]P. Gerlee, A. R. Anderson, “A hybrid cellular automaton model of clonal evolution in cancer: the emergence of the glycolytic phenotype”, Journal of Theoretical Biology, Vol. 250, No. 4, pp.705-722. 2008.
[59]K. O. Hicks, Y. Fleming, B. G. Siim, C. J. Koch, W. R. Wilson, “Extravascular diffusion of tirapazamine: effect of metabolic consumption assessed using the multicellular layer model”, International Journal of Radiation Oncology* Biology* Physics, Vol. 42, pp. 641-649, 1998.
[60]AR. Anderson, “A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion”, Mathematical Medicine and Biology, Vol. 22, No. 2, pp.163-86, 2005 Jun 1
[61]S. Walenta, S. Snyder, Z. Haroon, R. Braun, K. Amin, D. Brizel, W. Mueller-Klieser, B. Chance, M. Dewhirst, “Tissue gradients of energy metabolites mirror oxygen tension gradients in a rat mammary carcinoma model”, International Journal of Radiation Oncology* Biology* Physics, Vol. 51, pp. 840–848, 2001.
[62]S. Li, Z. Han, Y. Ma, R. Song, T. Pei, T. Zheng, J. Wang, D. Xu, X. Fang, H. Jiang, L..Liu, “Hydroxytyrosol inhibits cholangiocarcinoma tumor growth: an in vivo and in vitro study”, Oncology reports, Vol. 31, No. 1, pp. 145-52, 2014 Jan 1.
[63]B. Ribba, T. Alarcon, K. Marron, P.K. Maini, and Z. Agur, “The Use of Hybrid Cellular Automaton Models for Improving Cancer Therapy”, In Cellular Automata, Vol. 3305, pp. 444–453, 2004.
[64]D.M. Brizel, T. Schroeder, R.L. Scher, S. Walenta, R.W. Clough, M.W. Dewhirst, W. Mueller-Klieser, “Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer”, International Journal of Radiation Oncology* Biology* Physics, Vol. 51, No. 2, 2001 Oct 1.