Document Type : Full Research Paper


1 Assistant Professor, Biomedical Engineering Department, Research Laboratory of Biomedical Signals and Sensors, Iran University of Sciences and Technology (I.U.S.T), Tehran, Iran

2 Ph.D Candidate, Biomedical Engineering Department, Research Laboratory of Biomedical Signals and Sensors, Iran University of Sciences and Technology (I.U.S.T), Tehran, Iran


In this paper, a new method is proposed for slowing down avascular tumor growth. Our method is established on an agent based avascular tumor growth model (ABM). The model is based on biological assumptions with regard to the immune system interactions. The model parameters are fitted in compatability with cancer biology using in vivo expremental data. The immune cells recruitment, which usually occur after that tumor cells are identified, are also considered in ABM model. The results show that the proposed model not only is able to simulate the tumor growth graphically, but also the in vivo tumor growth quantitatively and qualitatively. Besides, the model proposes a new idea for slowing down the tumor growth considering two types of prolaiferative tumor cells, i.e. the tumor will grow slowly if the division probability of the proliferative tumor cells depends on the microenvironmental conditions. The proposed idea has been validated using an in silico simulation.  


Main Subjects

[1]     W. Materi, D.S. Wishart, “Computational Systems Biology in Cancer: Modeling Methods and Applications”. Gene Regul Syst Bio, Vol. 1, pp. 91–110, 2007.
[2]     D. Hanahan, R.A. Weinberg, "The hallmarks of cancer". Cell, Vol. 100, no. 1, pp. 57-70, 2000.
[3]     L. Hanin, “Why victory in the war on cancer remains elusive: biomedical hypotheses and mathematical models”. Cancers, Vol. 3, no. 1, pp. 340-67, Jan 2011.
[4]   M.S. Alber, M.A. Kiskowski, J.A. Glazier, & Y. Jiang, "On cellular automaton approaches to modeling biological cells", In Mathematical Systems Theory in Biology, Communications, Computation, and Finance, pp. 1-39, 2003. Springer New York.
[5]     W.Y. Tan, W. Ke, G. Webb, “A stochastic and state space model for tumour growth and applications”, Comput Math Methods Med, Vol. 10, no. 2, pp. 117–138, 2009.
[6]     R. Durrett, “Cancer Modeling: A Personal Perspective”. Notices of the AMS, Vol. 60, no. 3, 2013. DOI:
[7]     B. Burkholder, R.Y. Huang, R. Burgess, S. Luo, V.S. Jones, W. Zhang, Z.Q. Lv, C.Y. Gao, B.L. Wang, Y.M. Zhang, R.P. Huang, "Tumor-induced perturbations of cytokines and immune cell networks". Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1845, no. 2, pp. 182-201, 2014.
[8]     S. I. Grivennikov, F. R. Greten, and M. Karin, “Immunity, Inflammation, and Cancer”. Cell, Vol. 140, pp. 883–899, March 19, 2010, Elsevier Inc, DOI 10.1016/j.cell.2010.01.025
[9]     D.G. Mallet, L.G. De Pillis, “A cellular automata model of tumor–immune system interactions,” J Theoret Biol, Vol. 239, no. 3, pp. 334–350, 2006. doi:10.1016/j.jtbi.2005.08.002.
[10] A.C. Burton, “Rate of growth of solid tumours as a problem of diffusion”. Growth, Vol. 30, pp. 159–176, 1966.
[11] R.P. Araujo, D.L.S. McElwain, “A history of the study of solid tumour growth: The contribution of mathematical modeling”, Bull Math Biol, Vol. 66, no. 5, pp. 1039-1091, 2004.
[12] A. Friedman, “A Hierarchy of Cancer Models and their Mathematical Challenges”, Discrete Contin. Dyn. Syst. Ser. B, Math Models Cancer, Vol. 4, pp.147-159, 2004.
[13] S. Habiba, C. Molina-Parisb, T.S. Deisboeck, “Compelx dynamics of tumors: modeling an emerging brain tumor with coupled reaction-diffusion equations”. Physica A, Vol. 327, no. 3-4, pp. 501-524, 2003.
[14] T. Roose, S.J. Chapman, P.K. Maini, “Mathematical Models of Avascular Tumor Growth”. SIAM Rev, Vol. 49, no. 2, pp. 179–208, 2007.
[15] A.R. Kansal, S. Torquato, G.R. Harsh, E.A. Chiocca and T.S. Deisboeck, “Simulated brain tumour growth dynamics using a three-dimensional cellular automaton,” J Theoret Biol, Vol. 203, No. 4, pp. 367-382, 2000. DOI:10.1006/jtbi.2000.2000.
[16] S. Torquato, “Toward an Ising model of cancer and beyond”. Phys. Biol., Vol. 8, No. 1, 2011. DOI:10.1088/1478-3975/8/1/015017.
[17] J. Moreira, A. Deutsch, “Cellular automaton models of tumor development: a critical review”. Adv. Complex Syst, Vol. 5, Nos. 2 & 3, pp. 247-267, 2002.
[18] A.L. Ferreira, D. Lipowska, and A. Lipowski, “Statistical mechanics model of angiogenic tumor growth”. Phys Rev E 85, no. 1, p. 010901, 2012.
[19]  S.M. Peirce, “Computational and mathematical modeling of angiogenesis”. Microcirculation 15, no. 8, pp. 739-751, 2008. doi:10.1080/10739680802220331.
[20] M. Scianna, C. Bell, L. Preziosi, “A Review of Mathematical Models for the Formation of Vascular Networks,” J Theoret Biol, Vol. 333, pp.174-209, 2013.
[21] M. Williamson, “Mathematical models of invasion. Biological invasions: a global perspective”. John Wiley and Sons, Chichester. pp. 329-50, 1989.
[22] P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human Tumors: A Review”. Cancer Res. Vol. 49, pp. 6449-6465, 1989.
[23] H. Ungefroren, S. Sebens, D. Seidl, H. Lehnert, R. Hass, “Interaction of tumor cells with the microenvironment”. Cell Commun Signal, Vol. 9, no. 18, pp. 992-1009, 2011.
[24] B. Nicola, P. Luigi, “Multiscale Modeling and Mathematical Problems Related to Tumor Evolution and Medical Therapy”, Comput Math Methods Med, Vol. 5, no. 2, pp. 111-136, 1990.
[25] H. Byrne, T. Alarcon, M. Owen, S. Webb, & P. Maini, “Modeling aspects of cancer dynamics: a review”, Philos Trans R Soc A, Vol. 364, pp. 1563–1578, 2006.
[26] M. Chaplain, “Modelling aspects of cancer growth: insight from mathematical and numerical analysis and computational simulation”. In Lecture notes in mathematics: Vol. 1940. Multiscale problems in the life sciences (pp. 147–200). Berlin: Springer, 2008.
[27] H. Hatzikirou, G. Breier, A. Deutsch, “Cellular automaton models for tumor invasion”. Encyclopedia of Complexity and Systems Science, pp.1-18, 2008.
[28] K.A. Rejniak, A.R.A. Anderson,  “Hybrid Models of Tumor Growth”, Wiley Interdiscip Rev Syst Biol Med., Vol. 3, no. 1, pp. 115–125, 2011. doi:10.1002/wsbm.102.
[29] S.J. Merrill, “Foundations of the use of enzyme kinetic analogy in cell-mediated cytotoxicity”. Math Biosci, Vol. 62, pp. 219–236, 1982.
[30] S. Eikenberry, C. Thalhauser, Y. Kuang, C. T. Bergstrom, “Tumor-Immune Interaction, Surgical Treatment, and Cancer Recurrence in a Mathematical Model of Melanoma”.  PLoS Comput Biol, Vol. 5, no. 4, e1000362, 2009.
[31] K.P. Wilkie, P. Hahnfeldt, “Modeling the Dichotomy of the Immune Response to Cancer: Cytotoxic Effects and Tumor-Promoting Inflammation”. arXiv preprint arXiv:1305.3634.
[32] R. Yafia, “A study of differential equation modeling malignant tumor cells in competition with immune system”. Int. J. Biomath, Vol. 4, no. 2, pp. 185–206, 2011. DOI: 10.1142/S1793524511001404.
[33] J.A. Adam, N. Bellomo, “A Survey of Models for Tumor–immune System Dynamics”. Birkhauser, Basel, 1997.
[34] K.P. Wilkie “Chapter 10: A Review of Mathematical Models of Cancer–Immune Interactions in the Context of Tumor Dormancy”, Systems Biology of Tumor Dormancy, Advances in Experimental Medicine and Biology 734, DOI 10.1007/978-1-4614-1445-2 10.
[35] R. Eftimie, J.L. Bramson, D.J.D. Earn, “Interactions Between the Immune System and Cancer: A Brief Review of Non-spatial Mathematical Models”. Bull Math Biol, Vol. 73, pp. 2–32, 2011. DOI 10.1007/s11538-010-9526-3.
[36] L. Zhang, C.A. Athale, T.S. Deisboeck,  “Development of a three-dimensional multiscale agent-based tumor model: simulating gene-protein interaction profiles, cell phenotypes and multicellular patterns in brain cancer,” J. Theoret. Biol., Vol. 244, pp. 96–107, 2007.
[37] X. Sun, L. Zhang, H. Tan, J. Bao, C. Strouthos, X. Zhou, “Multi-scale agent-based brain cancer modeling and prediction of TKI treatment response: incorporating EGFR signaling pathway and angiogenesis”. BMC Bioinformatics, Vol. 13, p. 218, 2012.
[38] T.A. Schuetz, S. Becker, A. Mang, A. Toma, T.M. Buzug, “Modelling of glioblastoma growth by linking a molecular interaction network with an agent-based model”, Math Comput Model Dyn Syst, pp. 1–17, 2013.
[39] M. Brown, E. Bowring, S. Epstein, M. Jhaveri, R. Maheswaran, P. Mallick, et al., “Applying multi-agent techniques to cancer modeling”. In: Proceedings of the 6th annual workshop on multiagent sequential decision making in uncertain domains (MSDM). pp. 8–15, 2011.
[40] J. Wang, L. Zhang, C. Jing, G. Ye, H. Wu, H. Miao, et al., “Multi-scale agent-based modeling on melanoma and its related angiogenesis analysis”, Theor Biol Med Model, Vol. 10, p. 41, 2013.
[41] V. Shankaran, H. Ikeda, A.T. Bruce, J.M. White, P.E. Swanson, L.J. Old, and R.D. Schreiber, “IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity”. Nature, Vol.  410, no. 6832, pp. 1107-1111, 2011.
[42] G. Yao, "Modelling mammalian cellular quiescence." Interface focus, Vol. 4, no. 3, p. 20130074, 2014.
[43] T.L. Whiteside, “The tumor microenvironment and its role in promoting tumor growth”. Oncogene, Vol. 27, no. 45, pp. 5904-5912, 2008.
[44] J. Gamrekelashvili, C. Krüger, R. von Wasielewski, M. Hoffmann, K.M. Huster, D.H Busch., M.P. Manns, F. Korangy, and T.F. Greten, “Necrotic tumor cell death in vivo impairs tumor-specific immune responses”. J Immunol, Vol. 178, no. 3, pp. 1573-1580, 2007.
[45] C. Loizides, D. Iacovides, M.M. Hadjiandreou, G. Rizki, A. Achilleos, K. Strati, G.D. Mitsis, “Model-Based Tumor Growth Dynamics and Therapy Response in a Mouse Model of De Novo Carcinogenesis”. PloS one. Vol. 10, no. 12, p. e0143840, 2015.