Document Type : Full Research Paper

Authors

1 1M.Sc Student, Mechanical Engineering Department, Yazd University, Yazd, Iran

2 Associate Professor, Mechanical Engineering Department, Yazd University, Yazd, Iran

3 Assistant Professor, Mechanical Engineering Department, Shahrood University of Technology, Shahrood, Iran

Abstract

In this study, a portable upperlimb exoskeleton is designed for the purpose of rehabilitation and helping the disabled people to do their daily activities. This exoskeleton has two active and one passive degrees of freedom for the shoulder joint. In this system, the idea of cable transmossiom mechanism and guidance pulley with the ability to change the force direction is used. The two active DOFs of the shoulder joint is achived only by pulling one cable for each axis based on the novel design of this mechanism. Each axis of the shoulder is driven independently which implies that a single axis can be installed on the arm. This exoskeleton does not impose any limitation on the vertical motion of the scapula. In addition, it is inexpensive, lightweight and can easily be used. In this paper, after introducing the exoskeleton system, the required motor torques for generating a prescribed task are obtained. In the next step, the kinematic and dynamic equations of this system are derived. By simulating the exoskeleton in CATIA and MATLAB softwares, and presenting the results, the performance of the exoskeleton is evaluated. The results show that this novel exoskeleton system posses an excellent capacity to perform the rehabilitation excersises for shoulder joint.

Keywords

Main Subjects

[1]     R.V. Ham, T.G. Sugar, W.H. Kevin, B. Anderboroght, D. Lefeber, “Compliant actuator designs,” IEEE Robot. Autom. Mag., vol. 16, no. 3, pp. 81-94, Sep., 2009.
[2]     S. Glowinski, T. Krzyzynski, S. Pecolt, I. Maciejewsk, “Design of motion trajectory of an arm exoskeleton,” Arch. Appl. Mech., vol. 85, no. 1, pp. 75-87, Jan., 2015.
[3]     T. Nef, M. Mihelj, R. Riene, “ARMin: a robot for patient-cooperative arm therapy,” J.  Med. Biol. Eng. Comput., vol. 45, no. 9, pp. 887-900, Sep., 2007.
[4]     Y. Mao, S.K. Agrawal, “A cable driven upper arm exoskeleton for upper extremity rehabilitation,” Proc. IEEE International Conference on Robotics and Automation (ICRA), pp. 4163-4168, 2011.
[5]     N. Hogan, H.I. Krebs, J. Charnnarong, P. Srikrishna, A. Sharon, “MIT-MANUS: a workstation for manual therapy and training. I.,” proc. IEEE International Workshop on Robot and Human Communication, pp. 161-165, 1992.
[6]     M. Bamdad, H. Zarshenas, “Elbow rehabilitation robot with cable actuation: First experimental results,” Proc. 2d International Conference on Robotics and Mechatronics (ICRoM), Tehran, Iran, pp. 440-444, Oct., 2014.
[7]     J. Perry, J. Rosen, S. Burns, “Upper-Limb Powered Exoskeleton Design,” IEEE. ASME. Trans. Mechatron., vol. 12, no. 4, pp.408-417, Aug., 2007.
[8]     K. Kiguchi, “Active exoskeletons for upper-limb motion assist,” Int. J. HR., vol. 4, no. 3, pp. 607-624, Sep., 2007.
[9]     M. Moradi Khoolenjani, A. Yousefi Koma, M. Delkhosh, Z. Arjmandi, “Dynamic Analysis of an Upper-Limb Exoskeleton at Quasi-static Conditions,” Proc. 1st International Conference on Robotics and Mechatronics (ICRoM), Tehran, Iran, Feb., 2013.
[10] P.H. Stern, T. Lauko, “Modular designed, wheelchair based orthotic system for upper extremities,” Spinal Cord., vol. 12, no. 4, pp. 299–304, Feb., 1975.
[11]  ع. یوسفی‌کما، ع. طاهری‌فر، م. جوکار، ا.م. قاسمی‌تودشکی، «طراحی مکانیزم برون‌پوش بالاتنه بر اساس معیارهای سینماتیکی و دینامیکی،» مجموعه مقالات اولین کنفرانس بین‌المللی رباتیک و مکاترونیک، تهران، ایران، بهمن 1391.
[12]  م. ساده‌دل، ع. یوسفی‌کما، ع. طاهری‌فر، م. جوکار، «کنترل ربات برون‌پوش سه‌ درجه درجه آزادی بالاتنه با استفاده از یک اهرم کنترلی،» مجموعه مقالات اولین کنفرانس بین‌المللی رباتیک و مکاترونیک، تهران، ایران، بهمن 1391.
[13] D. Naidu, R. Stopforth, G. Bright, S. Davrajh, “A 7 DOF Exoskeleton Arm: Shoulder, Elbow, Wrist and Hand Mechanism for Assistance to Upper Limb Disabled Individuals,” Proc. Africon The Falls Resort and Conference Centre, Livingstone, Zambia,  pp. 1-6, Sep., 2011.
[14] Lugo‌Villeda, M., Sanchez, F., A. Ramirez, O., and ParraVega, V.,“Robotic Design of an Upper Limb Exoskeleton for Motion Analysis and Rehabilitation of Paediatric Neuromuscular Disorders”, Converging clinical and Engi Research on NB, BIOSYSROB, pp. 265-269, 2013.
[15] T. Nef, M. Guidali, V. Klamroth-Marganska, R. Riener, “ARMin-exoskeleton robot for stroke rehabilitation,” Proc. World Congress on Medical Physics and Biomedical Engineering, Munich,  Germany, pp. 127-130, Sep., 2009.
[16] B. Van Ninhuijs, L.A. van der Heide, J.W. Jansen, B.L.J. Gysen, D.J. van der Pijl, E.A. Lomonova, “Overview of Actuated Arm Support Systems and Their Applications,” J.  Actuators, vol. 2, no. 4, pp. 86-110, Oct., 2013.
[17] S.K. Mustafa, G. Yang, S.H. Yeo, W. Lin, “Optimal design of a bio-inspired anthropocentric shoulder rehabilitator,” Appl. Bionics. Biomech, Vol. 3, no. 3, pp. 199-208, 2006.
[18] G. Yang, W. Lin, M.S. Kurbanhusen, C.B. Pham, S.H. Yeo, “Kinematic design of a 7-DOF cable-driven humanoid arm: a solution-in-nature approach,” Proc. International Conference on Advanced Intelligent Mechatronics (AIM), Monterey, California, USA, pp. 24-28, Jul., 2005.
[19] S.K. Agrawal, V.N. Dubey, J.J. Gangloff, E. Brackbill, V. Sangwan, “optimization and design of a cable driven upper armexoskeleton,” Proc. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE), San Diego, California, USA, Sep., 2009.
[20] Y. Mao, S.K. Agrawal, “Design of a Cable-Driven Arm Exoskeleton (CAREX) for Neural Rehabilitation,” IEEE. Trans. Robot., vol. 28, no. 4, pp. 992-931, Aug., 2012.
[21] Y. Mao, X. Jin, S.K. Agrawal, “Real-time estimation of glenohumeral joint rotation center with cable-driven arm exoskeleton (CAREX)—a cable-based arm exoskeleton”, Journal of Mechanisms and Robotics, vol. 6, 145021-145025, 2014.
[22] I. Galiana, F. Hammond III, R. Howe, M. Popovic, “Wearable Soft-Orthotic Device for Post Stroke Shoulder Rehabilitation: Identifying Misalignments,” Proc. IEEE International Conference on Intelligent Robotics and Systems, Vilamoura, Portugal, pp. 317-322, Oct., 2012.
[23] J.S. Sulzer, M.A. Peshkin, J.L. Patton, “MARIONET: an exotendon-driven rotary series elastic actuator for exerting joint torque,” Proc. 9th International Conference on Rehabilitation Robotics (ICORR), Chicago, IL, USA, pp. 103-108, Jun., 2005. 
[24] J.S. Sulzer, M.A. Peshkin, J.L. Patton, “Design of a mobile, inexpensive device for upper extremity rehabilitation at home,” Proc. 10th International Conference on Rehabilitation Robotics, Noordwijk, The Netherlands, pp. 933-937, Jun., 2007.
[25] M. Bamdad, H. Zarshenas, “Robotic rehabilitation with the elbow stiffness adjustability,” Journal of Modares Mechanical Engineering, vol. 14, no. 11, pp. 151-158, Feb., 2015. (In Persian)
[26] M. Bamdad, H. Zarshenas, “Modeling of a novel cable driven robot for upper limb rehabilitation,” Proc. 3rd International Conference on Robotics and Mechatronics (ICRoM), Tehran, Iran, pp. 575-580, Oct., 2015.
[27] H.D. Lee, B.K. Lee, W.S. Kim, J.S. Han, K.S. Shin, C.S. Han, “Human–robot cooperation control based on a dynamic model of an upper limb exoskeleton for human power amplification,” J. Mechatronics, vol. 24, no. 2, pp. 168-176, 2014.
[28] D.A. Winter, “Biomechanics and motor control of human movement,” John Wiley and Sons, 2009.