Document Type : Full Research Paper


1 M.Sc. Student, Department of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran

2 Associate Professor, Department of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran

3 Ph.D. Student, Department of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran


Nowadays, patients crowd suffering from heart disease are increasing along with the development of technology and mechanized life. On the other hand, donor hearts ready for transplantation is limited in the world. Therefore, exploiting blood pumps is a suitable alternative for helping the patient during the waiting time and even until the end of life. The blood pumps should be able to satisfy the biological needs, including proper output pressure and flow rate, in an acceptable margin of safety in terms of blood injuries. Reduction of pump size, blood exposure time and blood damages such as hemolysis are mentioned as the important challenges in the design of blood pumps. 30% of the patients who are using a left ventricle blood pump, required right ventricle blood pump due to right ventricle failure. Fulfilling the physiological requirement of right ventricle a RVAD must generate pressure in the range of 15-25 mmHg and flow rate equal to 5 L/min. generation of pressure over 25 mmHg will lead to pulmonary hypertension and its consequent problems. In this research, a centrifugal blood pump is designed for the right ventricle with an emphasis on impeller geometry. This pump is simulated for rotational speeds of 1500, 2000 rpm and flow rates of 4-6 L/min by using the computational fluid dynamics. The designed pump produces a flow rate of 5 L/min at 1500 rpm and a pressure of 23 mmHg. The amount of the hemolysis index calculated by the Lagrangian method is 0.00413.


[1]   P. Wannawat, N. Foojinphan, T. Khienwad, P. Naiyanetr, The study of various impeller design for centrifugal blood pump using computer method, in Proceeding of Biomedical Engineering (BioMed), 2017 13th IASTED International Conference on, IEEE, pp. 247-253.
[2]   B. Ghadimi, A. Nejat, S. A. Nourbakhsh, N. Naderi, Numerical Investigation of Fluid Flow and Hemolysis in Axial and Centrifugal Pump as Left Ventricular Assist Device (LVAD),Modares Mechanical Engineering, Vol. 17, No. 3, pp. 135-142,  2017 (in Persian).
[3]   M. Jabbarifar, A. Riasi, Numerical study on hemolysis induced by speed-changing heart pump, Modares Mechanical Engineering, Vol. 18, No. 02, pp. 273-280, 2018 (in Persian)..
[4]   S. J. A. o. t. Takatani, c. surgery, Beyond implantable first generation cardiac prostheses for treatment of end-stage cardiac patients with clinical results in a multicenter Annals of thoracic and cardiovascular surgery, Vol. 8, No. 5, pp. 253-263, 2002.
[5]   J. Apel, R. Paul, S. Klaus, T. Siess, H. J. A. O. Reul, Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics, Artificial Organs,Vol. 25, No. 5, pp. 341-347, 2001.
[6]   D. Arora, M. Behr, M. J. A. o. Pasquali, Hemolysis estimation in a centrifugal blood pump using a tensor‐based measure, Artificial organs,Vol. 30, No. 7, pp. 539-547, 2006
[7]   M. Grigioni, U. Morbiducci, G. D’Avenio, G. Di Benedetto, C. J. B. Del Gaudio, M. i. Mechanobiology, A novel formulation for blood trauma prediction by a modified power-law mathematical model, Biomechanics Modeling in Mechanobiology,Vol. 4, No. 4, pp. 249-260, 2005.
[8]   M. Behbahani, M. Behr, M. Hormes, U. Steinseifer, D. Arora, O. Coronado, M. J. E. J. o. A. M. Pasquali, A review of computational fluid dynamics analysis of blood pumps, European Journal of Applied Mathematics,Vol. 20, No. 4, pp. 363-397, 2009.
[9]   S. J. Hund, J. F. J. P. i. M. Antaki, Biology, An extended convection diffusion model for red blood cell-enhanced transport of thrombocytes and leukocytes, Physics in Medicine,Vol. 54, No. 20, pp. 6415, 2009.
[10]G. W. Burgreen, J. F. Antaki, B. P. J. A. j. Griffith, A design improvement strategy for axial blood pumps using computational fluid dynamics ASAIO journal (American Society for Artificial Internal Organs, Vol. 42, No. 5, pp. M354-60, 1996.
[11]M. Kobayashi, D. J. Horvath, N. Mielke, A. Shiose, B. Kuban, M. Goodin, K. Fukamachi, L. A. J. A. o. Golding, Progress on the design and development of the continuous‐flow total artificial heart,  The Journal of Heart and Lung Transplantation Vol. 36, No. 8, pp. 705-713, 2012.
[12]G. Paul, A. Rezaienia, E. Avital, T. J. J. o. M. D. Korakianitis, Machinability and optimization of shrouded centrifugal impellers for implantable blood pumps Journal of Medical Devices, Vol. 11, No. 2, pp. 021005, 2017
[13]Y. Miyazoe, T. Sawairi, K. Ito, Y. Konishi, T. Yamane, M. Nishida, T. Masuzawa, K. Takiura, Y. J. A. o. Taenaka, Computational fluid dynamic analyses to establish design process of centrifugal blood pumps, Artificial organs,Vol. 22, No. 5, pp. 381-385, 1998.
[14]Y. Qian, C. D. J. A. o. Bertram, Computational fluid dynamics analysis of hydrodynamic bearings of the VentrAssist rotary blood pump, Artificial organs ,Vol. 24, No. 6, pp. 488-491, 2000.
[15]Z.  U.  Warsi,  Fluid dynamics:  theoretical and computational approaches:  CRC press,  2005
[16]A. Untaroiu, LEV-VAD2 axial flow blood pump: optimized flow path design by means of computational fluid dynamics: ProQuest, 2006.
[17]T. Murashige, R. Kosaka, D. Sakota, M. Nishida, Y. Kawaguchi, T. Yamane, O. J. A. o. Maruyama, Evaluation of a spiral groove geometry for improvement of hemolysis level in a hydrodynamically levitated centrifugal blood pump, Artificial organs , Vol. 39, No. 8, pp. 710-714, 2015.
[18]D. Timms, J. Fraser, M. Hayne, J. Dunning, K. McNeil, M. J. A. O. Pearcy, The BiVACOR rotary biventricular assist device: concept and in vitro investigation,  Artificial Organs, Vol. 32, No. 10, pp. 816-819, 2008
[19]L. Punnoose, D. Burkhoff, S. Rich, E. M. J. P. i. c. d. Horn, Right ventricular assist device in end-stage pulmonary arterial hypertension: insights from a computational model of the cardiovascular system, Progress in cardiovascular diseases Vol. 55, No. 2, pp. 234-243. e2, 2012
[20]T. Yamane, R. Kosaka, M. Nishida, O. Maruyama, Y. Yamamoto, K. Kuwana, H. Kawamura, Y. Shiraishi, T. Yambe, Y. J. A. o. Sankai, Enhancement of hemocompatibility of the MERA monopivot centrifugal pump: toward medium‐term use, Artificial organs,Vol. 37, No. 2, pp. 217-221, 2013.
[21]E. Nammakie, H. Niroomand-Oscuii, M. Koochaki, F. J. M. Ghalichi, b. engineering, computing, Computational fluid dynamics-based study of possibility of generating pulsatile blood flow via a continuous-flow VAD,  Medical & biological engineering & computing, Vol. 55, No. 1, pp. 167-178, 2017.
[22]N. Moazami, K. Fukamachi, M. Kobayashi, N. G. Smedira, K. J. Hoercher, A. Massiello, S. Lee, D. J. Horvath, R. C. J. T. J. o. H. Starling, L. Transplantation, Axial and centrifugal continuous-flow rotary pumps: a translation from pump mechanics to clinical practice, The Journal of Heart and Lung Transplantation ,Vol. 32, No. 1, pp. 1-11, 2013.
[23]O. Demir, E. Biyikli, I. Lazoglu, S. J. A. o. Kucukaksu, Design of a centrifugal blood pump: Heart Turcica Centrifugal, Artificial organs, Vol. 35, No. 7, pp. 720-725, 2011
[24]K. Mondee, N. Foojinphan, P. Wannawat, P. Naiyanetr, The effect of shear stress on the impeller design of centrifugal blood PUMP, in Proceeding of Biomedical Engineering International Conference (BMEiCON), IEEE, pp. 1-4.
[25]B. C. Ng, M. Kleinheyer, P. A. Smith, D. Timms, W. E. Cohn, E. J. P. o. Lim, Pulsatile operation of a continuous-flow right ventricular assist device (RVAD) to improve vascular pulsatility, PloS one ,Vol. 13, No. 4, pp. e0195975, 2018.
[26]Mera pump brochure, available:
[27]Nishida, M., Nakayama, K., Sakota, D., Kosaka, R., Maruyama, O., Kawaguchi, Y., ... & Yamane, T. (2016). Effect of Impeller Geometry on Lift‐Off Characteristics and Rotational Attitude in a Monopivot Centrifugal Blood Pump. Artificial organs, 40(6), E89-E101.
[28]F. M. White and I. Corfield, Viscous fluid flow vol. 3: McGraw-Hill New York, 1991.
[29]F. R. J. A. j. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA journal,Vol. 32, No. 8, pp. 1598-1605, 1994.
[30]Fraser KH, Taskin ME, Griffith BP, Wu ZJ. The Use of Computational Fluid Dynamics in the Development of Ventricular Assist Devices. Medical engineering & physics. 2011;33(3):263-80.
[31]Wu J, Paden BE, Borovetz HS, Antaki JF. Computational Fluid Dynamics Analysis of Blade Tip Clearances on Hemodynamic Performance and Blood Damage in a Centrifugal Ventricular Assist Device. Artificial Organs. 2010;34(5):402-11.
[32]Hochstuhl J, Kassi M, Elias S, Ruhparwar A, Karmonik C, Chang S. Computational Fluid Dynamics (CFD) - A Reliable Basis for Therapy and Surgical VAD Strategy? The Journal of Heart and Lung Transplantation. 2018;37(4):S268-S9.
[33]R. A. Malinauskas, P. Hariharan, S. W. Day, L. H. Herbertson, M. Buesen, U. Steinseifer, K. I. Aycock, B. C. Good, S. Deutsch, K. B. Manning, B. A. Craven, FDA Benchmark Medical Device Flow Models for CFD Validation, ASAIO Journal, Vol. 63, No. 2, pp. 150-160, 2017.
[34]I. D. 14708-5, Implants for surgery – Active implantable medical devices – Part 5: Circulatory support devices, International Organization for Standardization (ISO), Vol. Arlington, VA, 2010.
[35]M. E. Taskin, K. H. Fraser, T. Zhang, C. Wu, B. P. Griffith, Z. J. Wu, Evaluation of Eulerian and Lagrangian models for hemolysis estimation, ASAIO Journal, Vol. 58, No. 4, pp. 363-372, 2012.
[36]Y. Zhang, S. Xue, X. M. Gui, H. S. Sun, H. Zhang, X. D. Zhu, S. S. Hu, A novel integrated rotor of axial blood flow pump designed with computational fluid dynamics, Artificial Organs, Vol. 31, No. 7, pp. 580-585, 2007.
[37]2nd Generation CentriMag Primary Console Operating Manual (US) 2011 Thoratec – Document No. PL-0047, Rev. 02 (December 2011)  Available:
[38]Song, X., Throckmorton, A. L., Wood, H. G., Antaki, J. F., & Olsen, D. B. (2004). Quantitative evaluation of blood damage in a centrifugal VAD by computational fluid dynamics. Journal of fluids engineering, 126(3), 410-418.
[39]E. Nammakie, O. H. Niroomand, F. Ghalichi, M. Koochaki, Numerical study of the performance of a blood pump by comparsion of three diffrent impellers to improve efficiency and decrease blood damages, Iranian Journal of Biomedical Engineering, 2015): 133-142 (in Persian).
[40]Wiegmann L, Boës S, de Zélicourt D, Thamsen B, Schmid Daners M, Meboldt M, Kurtcuoglu V, Blood Pump Design Variations and Their Influence on Hydraulic Performance and Indicators of Hemocompatibility. Ann Biomed Eng. 2018 Mar;46(3):417-428
[41]J. D. Bronzino, Biomedical engineering handbook vol. 2: CRC press, 1999
[42]B. Thamsen, R. Mevert, M. Lommel, P. Preikschat, J. Gaebler, T. Krabatsch, U. Kertzscher, E. Hennig, K. J. T. I. j. o. a. o. Affeld, A two-stage rotary blood pump design with potentially lower blood trauma: a computational study, The International journal of artificial organs, Vol. 39, No. 4, pp. 178-183, 2016.
[43]Ng, B. C., Kleinheyer, M., Smith, P. A., Timms, D., Cohn, W. E., & Lim, E. (2018). Pulsatile operation of a continuous-flow right ventricular assist device (RVAD) to improve vascular pulsatility. PloS one, 13(4), e0195975