Document Type : Full Research Paper


1 Associated Professor, Department of Materials Engineering, Faculty of Engineering, Arak University, Arak, Iran

2 M.Sc. Graduated, Department of Materials Engineering, Faculty of Engineering, Arak University, Arak, Iran



Teeth, as one of the most important organs of the body, play an essential role in beauty and one of the best ways to treat its disorder and damage is the use of orthodontics. Smart wires are widely used in orthodontics for tidying teeth and for reasons such as superelastic behavior, corrosion resistance, high fatigue life, good compatibility and reversible strain. In this paper, the finite element method was used to investigate the mechanical behavior of smart orthodontic wires according to the standard by applying tensile force and considering their metallurgical properties. The macroscopic model for describing the properties of matter was based on Helmholtz thermodynamic free energy. The results showed that with a 10°C changes in clinical temperature from 26°C to 36°C, the upper and lower plateau stresses and the strain elastic energy decreased about 10% and 18.28% respectively. Also with 10°C change in clinical temperature from 36°C to 46°C, the upper and lower plateau stresses and the strain elastic energy increased approximately 18% and 47.26% respectively. In conclusion, the smart orthodontic wire due to the lower level of the difference between the upper and lower plateau stresses, less elastic strain energy, complete hysteresis loop dependent on superelastic behavior and high correlation of experimental and numerical results related to force-strain changes showed better performance. This numerical study can provide a method to study the mechanical behavior of smart orthodontic wires with respect to the effects of metallurgical and mechanical properties for the effectiveness of the length of treatment in the tooth.


Main Subjects

  1. صدر­نژاد، س.خ.ا، توابی، ا.ح، قریشی،س، بخشی زاده، ن، رفتار تحت بار و فاز شناسی سیم‌های ارتودنسی از جنس الیاژ سو پر­الاستیک، یازدهمین کنفرانس مهندسی پزشکی ایران 28 و 29 بهمن سال 1382.
  2. علافی، ج.خ، حداد ب.ر، امین احمدی ب، بررسی رفتار سو پر الاستیک سیم‌های ارتودنسی مختلف از جنس نیکل –تیتانیوم چهاردهمین کنفرانس مهندسی پزشکی ایران بهمن.1386.
  3. صدر­نژاد، س.خ.ا، توابی، ا.ح، قریشی،س، چهار نوع سیم ارتودنسی تجاری از جنس نیکل تیتانیوم، مجله مهندسی پزشکی زیستی دوره 1 شماره 2 صفحات 191-181 (1383).
  4. حاج فتحعلیان م، شاه حسینی ط، حبیبی پارسا م، نیلی احمد آبادی م، حسین زاده نیک ط، قدیریان ح، بررسی خواص سوپر الاستیسیته سیم ارتودنسی NiTi با استفاده از خمش سه نقطه ای به کمک مدل شبیه سازی شده با دهان، نشریه دانشکده فنی و مهندسی دوره 42 شماره 5 صفحات 637-631 (1387).
  5. عبادی فر ا،مرادی نژاد م، صدرنژاد س.خ، ارزیابی عنصری سیم های نیکل تیتانیوم ارتودنسی در رابطه با خصوصیات خمش نیروی آنها مجله دانشکده دندانپزشکی دانشگاه علوم پزشکی شهید بهشتی، دوره 24 شماره 4 صفحات 229-219 (1390).
  6. F.J, Cenizo. M, Espinar. E, Rodriguez. A, Rúperez. E, Manero. J.M, NiTi superelastic rthodontic wires with variable stress obtained by ageing treatments, Materials Letters 104, 5–7(2013).
  7. W, David, R.W. H, Phase transformation changes in thermocycledNickel–titanium orthodontic wires, dental materials 2 6, 666–674 (2010).
  8. Braz F. F.M, Cruz. J.M, Magalhães. R.C., Comparative study of NiTi orthodontic wires, Materials Today: Proceedings 2S S995– S998 (2015).
  9. Fercˇec J, Anzˇel I, Rudolf R, Stress dependent electrical resistivity of orthodontic wire from the shape memory alloy NiTi, Materials and Design 55, 699–706 (2014).
  10. Razali,F., Mokhtar N., Force delivery of NiTi orthodontic arch wire at different magnitude of deflections and temperatures: A finite element study”, Journal of the Mechanical Behavior of Biomedical Materials 77, 234–241 (2018).
  11. Naceur I b, charfi a, bouraoui t, eiieuch kh, “finite element of superelastic nickel-titanium orthodontic wires”. Journal of Biomechanics, 47 (15), 3630–3638 (2014).
  12. Razali M F and Mahmud A S, Computational study on the effect of contact friction towards deactivation force of superelastic NiTi arch wires in a bracket system, Materials Research Express, (2019).
  13. Ahmad M.N., Mahmud A.S., Razali M.F., Mokhtar, N., Force-deflection behavior of  NiTi archwires in a polytetrafluoroethylene(Teflon) bracket system, Materialwiss. Werkstofftech. 50, 289–294 (2019).
  14. Gannoun, M, Hellara, L, Bouby,C ,Ben Zineb,T Bouraoui,T, Numerical simulation of the   force generated by a superelastic NiTi   orthodontic archwire during tooth  alignment phase: comparison between          different constitutive models, Materials Research Express, IOP Publishing Ltd, 5 (4), pp. 045405 (2020). 
  15. Ahmad M.N., Mahmud A.S., Razali M.F., Mokhtar, N., Force-deflection behavior of NiTi archwire at different configurations of bracket system, Materialwiss. Werkstofftech. 51, 1341–1345 (2020).
  16. Razali M F and Mahmud A S, Mechanical Deformation of Superelastic NiTi   Wire at Different Deflections in an Orthodontic   Bracket System,  Malaysian Journal of  Medicine and Health Sciences, 16(SUPP8): 13-17 (2020).
  17. Auricchio, F and Taylor, R.L, 1997, Shape-memory alloys: Modeling and numerical simulations of the finite-strain superelastic behavior, Comp. Meth. Al. Mech. Engrg, 143, 175-194 (1997).
  18. Nematzadeh, F and Sadrnezhaad, S.K, 2014, Effects of Crimping on Mechanical Performance of Nitinol Stent Designed for Femoral Artery: Finite Element Analysis. J. Mater. Eng. Perf, 22, 3228–3236 (2014).