Document Type : Full Research Paper

Authors

1 Department of biomedical engineering, Tehran Central Branch. Islamic Azad University

2 Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran

10.22041/ijbme.2023.1972138.1812

Abstract

The pathological effects of the tumor on the respiratory airway have always been the focus of researchers. So, these effects will lead to the suffocation of the patient in acute cases. This study presents a computational model to investigate the effect of a tumor on the airflow in the larynx area with the help of Ansys software. The presented model is able to numerically calculate the effect of tumor presence on airspeed and pressure in the upper air system. This study considered the simulation of steady airflow for exhalation in three respiratory flow rates of 15 L/min, 26 L/min, and 30 L/min. The maximum speed limit in the respiratory flow of L/min 15, L/min 26, and L/min 30, respectively, 6.26 m/s, 10.58 m/s, and 12.14 m/s, appears in the larynx. Also, the highest pressure occurs in the trachea, so the maximum pressure in the respiratory rate is 15 L/min, 26 L/min, and 30 L/min, respectively, equal 19.6 Pa, 51.01 Pa, and 65.8 Pa. On the other hand, most deformation occurs in the area of ​​narrowing of the respiratory tract. With the increase in the flow rate, the amount of deformation also increases. The maximum deformation on the wall at the respiratory flow rate of 15 L/min, 26 L/min, and 30 L/min is equal to 0.07mm, 0.2mm, and 0.27mm, respectively. Due to the presence of a tumor in this respiratory model, velocity and WSS reach their maximum in the larynx region. The presence of a tumor can gradually lead to airway obstruction. Moreover, the risk of airway obstruction increases even in a slight reduction in respiratory capacity. Providing a numerical model for the respiratory system can effectively lead to a better treatment approach.

Keywords

Main Subjects