تفکیک سالمندان با سابقة زمین خوردن از سالمندان بدون سابقه زمین خوردن با استفاده از دسته‌ ویژگی‌های جدید استخراج شده از الگوی متناوب راه رفتن

نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانش‌آموختة کارشناسی ارشد مهندسی پزشکی، بیوالکتریک، آزمایشگاه موتورکنترل و علوم اعصاب، دانشکده مهندسی برق و کامپیوتر، پردیس دانشکده‌های فنی، دانشگاه تهران

2 دانشیار، گروه مهندسی پزشکی، آزمایشگاه موتورکنترل و علوم اعصاب، قطب علمی کنترل و پردازش هوشمند، دانشکده مهندسی برق و کامپیوتر، پردیس دانشکده‌های فنی، دانشگاه تهران

10.22041/ijbme.2013.13054

چکیده

با افزایش سن و یا بروز برخی بیماری‌ها نحوة راه رفتن تغییر می‌کند. برای مثال مشاهدات متعدد دلالت براین دارند که نحوة راه رفتن در سالمندانی که سابقه زمین خوردن دارند با افراد سالم متفاوت است. هدف این مقاله ارائة روشی برمبنای تحلیل حرکت با کمک تصاویر ویدئویی اخذ شده از فرد مورد آزمایش و بدون استفاده از نشانگر برای طبقه‌بندی سالمندان به افراد با سابقه زمین خوردن و افراد بدون سابقه زمین خوردن است. بعلاوه به‌منظور نشان دادن کارایی این روش، از آن برای طبقه‌بندی 8 نوع راه رفتن غیرطبیعی استفاده می‌شود. در روش ارائه شده، ابتدا فرد مورد آزمایش از پس‌زمینه استخراج و الگوی متناوب محاسبه شد. سپس با آستانه‌گذاری بر الگوهای متناوب، این الگوها هم‌تراز شدند و با استفاده از عملگرهای شکل‌شناسی (مورفولوژی) تصویر جدیدی بر اساس الگوهای متناوب ایجاد شد. به منظور سنجش میزان کارآمدی ویژگی‌های استخراج شده برای طبقه‌بندی سالمندان به دو گروه با سابقة افتادن و سالمندان بدون سابقه و تفکیک آنها از افراد جوان، تصاویر ویدئویی انجام آزمون برخیزوبرو از 8 سالمند با سابقة زمین خوردن، 8 سالمند بدون سابقه و 8 جوان سالم جمع‌آوری ‌شد. به‌علاوه برای طبقه‌بندی نحوة راه رفتن به دو گروه طبیعی و غیرطبیعی از جوانان خواسته ‌شد تا علاوه بر راه رفتن معمولی و تند، به انجام 7 نوع مختلف راه رفتن‌ نابهنجار شامل لنگیدن، اردک وار راه رفتن، تلوتلو به جلو عقب و طرفین، کشان کشان راه رفتن و زانوی بلند راه رفتن تظاهر کنند. پس از اعمال روش پیشنهادی، هر بار یکی از داده‌ها به عنوان آزمون بیرون گذاشته شده و شباهت آن با سایر داده‌ها به کمک همبستگی بهنجار سنجیده شد و برچسب گروه مربوط به داده‌ای که الگوی حاشیه‌ای آزمون بیشترین شباهت را با آن داشت، به دادة آزمون نسبت داده ‌شد. در آزمون‌برخیزو برو متعارف طبقه‌بندی برپایة زمان کل آزمون صورت می‌گیرد. در این پژوهش ما نشان دادیم که روش پیشنهادی خطایی در حدود 20% کمتر از روش متعارف برخیزوبرو دارد. به‌علاوه در این پژوهش نشان داده ‌شد که خطای روش پیشنهادی در تشخیص انواع راه رفتن نیز حدوداً 10% است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Classification of elderly subjects to fallers and non-fallers using a novel set of features extracted from gait frieze pattern

نویسندگان [English]

  • Ziba Gandomkar 1
  • Fariba Bahrami 2
1 M.Sc., Biomedical Engineering, Motion Control and Computational Neuroscience laboratory, School of ECE, College of Engineering, University of Tehran
2 Associate Professor, University of Tehran, College of Engineering, School of ECE, Motion Control and Computational Neuroscience laboratory, Control and Intelligent Processing Center of Excellence (CIPCE).
چکیده [English]

Changes in gait pattern are early symptoms in many disorders such as balance and control problems resulted in fall among elderlies. This paper aims at proposing a new set of features extracted from Gait Frieze Pattern (GFP) in order to classify seniors to fallers and non-fallers. For indicating the effectiveness of the presented method, the algorithm is used for recognition of different type of abnormal gaits. The introduced method consists of three main steps: extracting the subject from background, generating GFP and aligning them, and building the proposed image from GFP by thresholding followed by morphological operations. For evaluation of the proposed features, video sequences are collected from 8 elderly fallers, 8 non-fallers, and 8 youth while performing standard Timed Up and Go (TUG) test. In addition to TUG test youths are asked to walk fast and pretend to walk with 6 different types of abnormalities (limping, waddling, anterior- posterior sway, lateral sway, dragging, steppage gait). For finding correct classification rate, each time one data is considered as test and others as train and label of train data with the most similarity with test one on the score of normalized cross correlation is assigned to test data. Comparing to conventional TUG test, correct classification data is improved around 20% for faller detection. In addition, correct classification rate for detecting of different abnormalities in gait is approximately 90%.  

کلیدواژه‌ها [English]

  • Gait analysis
  • Gait Frieze Pattern
  • Elderly Fallers
  • Gait Classification
  • Abnormal Gait Detection
  • Timed Up and Go
[1]     Nothridge M., Nevitt M., Kelsey J., Link B., home hazards and fall in elderly: the role of health and functional status; American Journal of Public Health, 1995; 85: 509-515.

[2]     Alice C., Scheffer J., Marieke J., Schuurmans, Dijk N.V., Hooft T.V.D., Sophia E., Rooij D., Fear of falling: measurement strategy, prevalence, risk factors and consequences among older persons; Oxford Journals, Age and Ageing, 2008; 37(1): 19-24.

[3]     Lord S., Sherringtone C., Menz H.B., Falls in older people:Risk factor and sterategies for prevention, Cambridge: Cambrige University Press, 2001.

[4]     Tinetti M.E., Mendes de Leon C.F., Doucette J.T., Baker D.I., Fear of falling and fall-related efficacy in relationship to functioning among community living elderly; Journal of Gerontology, 1994; 49(3): 140-147.

[5]     Spellbring A., Assessing elderly patients at high risk for falls: a reliability study; Journal of Nursing Care Quality, 1992;  6: 30-35.

[6]     Shimada H., Suzukawa M., Ishizaki T., Kobayashi K., Kim H., Suzuki T., Relationship between subjective fall risk assessment and falls and fall-related fractures in frail elderly people; BMC Geriatrics, 2011; 40(11).

[7]     Karen L., Perel, Nelson A., Goldman R.L., Luther S.L., Prieto-Lewis N., Rubenstein L.Z., Fall Risk Assessment Measures: An Analytic Review; Journal of Gerontology, 2001; 56(12): 761-766.

[8]     Mathias S., Nayak U., Isaacs B., Balance in elderly patients: The “Get up and go,” test;  Arch. Phys. Med. Rehabil., 1986; 67: 387–389.

[9]     Verghese J., Buschke H., Viola L., Katz M., Hall C., Kuslansky G., Lipton R., Validity of divided attention tasks in predicting falls in older individuals: A preliminary study; J Am Geriatr Soc, 2002; 50(9): 1572-1576.

[10]  Higashi Y., Yamakoshi K., Fujimoto T., Sekine M., Tamura T., Quantitative evaluation of movement using the timed up-and-go test;  IEEEEng. Med. Biol. Mag., 2008; 27(4): 38–46.

[11]  Zampieri C., Salarian A., Carlson-Kuhta P., Aminian K., Nutt J.G., Horak F.B., The instrumented timed up and go test: Potential outcome measure for disease modifying therapies in Parkinson’s disease;  J. Neurol., Neurosurg. Psychiatry, 2010; 81: 171–176.

[12]  King R.C., Atallah L., Wong C., Miskelly F., Yang G., Elderly Risk Assessment of Falls with BSN; Body Sensor Networks (BSN), 2010 International Conference on , 7-9 June 2010: 30-35.

[13]  McGrath D., Greene B.R., Doheny E., McKeown D.J., De Vito C., Brian; , “Reliability of quantitative TUG measures of mobility for use in falls risk assessment,” Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, Aug. 30 2011-Sept. 3 2011; pp: 466-469.

[14]  Giansanti D., “Investigation of fall-risk using a wearable device with accelerometers and rate gyroscopes”, Physiol Meas., 2006; 27(11): 1081-1090.

[15]  Wang F., Stone E., Wenqing D., Banerjee T., Giger J., Krampe J., Rantz M., Skubic M., Testing an in-home gait assessment tool for older adults; Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, 3-6 Sept. 2009; pp: 6147-6150.

[16]  Skrba Z., O’Mullane B., Greene B.R., Scanaill C.N., Chie W.F., Quigley A., Nixon P., Objective real-time assessment of walking and turning in elderly adults; Engineering in Medicine and Biology Society, EMBC 2009. Annual International Conference of the IEEE, 3-6 Sept. 2009; pp: 807-810.

[17]  Courtney J., De Paor A.M., A Monocular Marker-Free Gait Measurement System; Neural Systems and Rehabilitation Engineering, IEEE Transactions, 2010; 18(4): 453-460.

[18]  Mostayed A., Mynuddin M., Mazumder G., Sikyung K., Se Jin P., Abnormal Gait Detection Using Discrete Fourier Transform; Multimedia and Ubiquitous Engineering, 2008. MUE 2008. International Conference, 24-26 April 2008; pp: 36-40.

[19]  Liu Y., Robert T., Gait Sequence Analysis using Frieze Patterns; Technical Report CMU-RI-TR-98-37, 2001.

[20]  Wang L., Abnormal Walking Gait Analysis Using Silhouette-Masked Flow Histograms; Pattern Recognition, ICPR 2006. 18th International Conference, 2006; 3: 473-476.

[21]  Lee S., Liu Y., Collins R., Shape Variation-Based Frieze Pattern for Robust Gait Recognition; Computer Vision and Pattern Recognition, 2007. CVPR ‘07. IEEE Conference, 17-22 June 2007; pp: 1-8.

[22]  Mathias S., Nayak U., Isaacs B., Balance in elderly patients: The “Get up and go,” test; Arch. Phys. Med. Rehabil., 1986; 67: 387–389.

[23]  Trueblood P.R., Hodson-Chennault N., McCubbin A., Youngclarke D., Performance and impairment-based assessments among community dwelling elderly:  Sensitivity and specificity; Issues Aging. 2001; 24(1): 2–6.