نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی پزشکی، گروه بیوالکتریک، دانشکده برق و کامپیوتر، دانشگاه تربیت مدرس

2 دانشیار، گروه بیوالکتریک، دانشکده برق و کامپیوتر، دانشگاه تربیت مدرس

10.22041/ijbme.2013.13079

چکیده

اساس سیستم‌های‌ واسط مغز-رایانه(BCI)کاربرفرما آشکارسازی و تشخیص بازه‌های رخداد یک فعالیت ذهنی مانند تصور حرکت از سیگنال خودبخودی مغز است که این مسأله به دلیل ماهیت غیرایستان و پیچیده سیگنال الکتروانسفالوگرام (EEG) مهمترین چالش در طراحی سیستم‌هایBCIاست. در این مقاله برای اولین بار از یک الگوریتم جدید طبقه‌بندی مبتنی بر یادگیری تنک به نامPCVM در طراحی سیستمBCIکاربرفرما استفاده شده است. هدف اصلی مقاله بررسی میزان موفقیت این طبقه‌بند در آشکارسازی بازه‌های وقوع حرکت پا در سیگنال پیوستهEEG است.PCVMدر مقایسه باSVM-که تاکنون عملکرد بسیار موفقی در سیستم‌هایBCI مبتنی بر حرکت و تصور حرکت داشته است- مزایای قابل توجهی از جمله ارائه خروجی به صورت احتمال تعلق دادگان به هر یک از طبقه‌ها و همچنین تعیین پارامترهای بهینه کرنل همزمان در الگوریتم یادگیری دارد. بعلاوه در این مقاله از فیلترهای با ضریب کیفیت ثابت به منظور تجزیه فرکانسی سیگنال استفاده شده است که به دلیل ماهیت قدرت تفکیک متغیر زمانی و فرکانسی در فرکانس‌های مرکزی مختلف، نقش مؤثرتری در تمایز الگوهای مربوط به بازه حرکت از سیگنال پس‌زمینه مغزی ایفا می‌کند. متوسط نتایج حاصل از طراحی سیستم کاربرفرما با استفاده از روش پیشنهاد شده در این مقاله برای دادگان ثبت شده از 7 کاربر حین انجام حرکت پا  بصورت %90= TPRو %4= FPRبدست آمد که در مقایسه با کارهای پیشین برای همین مجموعه دادگان، بهبود قابل ملاحظه‌ای (16% بهبودTPR و 2% بهبودFPR) حاصل شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Applying Probabilistic Classification Vector Machines in Self-paced BCI to Enhance Foot Movement Detection

نویسندگان [English]

  • Rahele Mohammadi 1
  • Ali Mahloojifar 2

1 Ph.D Student, Biomedical Eng. Department, Electrical and Computer Eng. College, TarbiatModares University

2 Associate Professor, Biomedical Eng. Department, Electrical and Computer Eng. College, TarbiatModares University

چکیده [English]

A critical issue in designing a self-paced brain computer interface (BCI) system is onset detection of the mental task from the continuous electroencephalogram (EEG) signal to produce a brain switch. This work shows significant improvement in a movement based self-paced BCI by applying a new sparse learning classification algorithm, probabilistic classification vector machines (PCVMs) to classify EEG signal. Constant-Q filters instead of constant bandwidth filters for frequency decomposition are also shown to enhance the discrimination of movement related patterns from EEG patterns associated with idle state. Analysis of the data recorded from seven subjects executing foot movement using the constant-Q filters and PCVMs shows a statistically significant 16% (p<0.03) average improvement in true positive rate (TPR) and a 2% (p<0.03) reduction in false positive rate (FPR) compared with applying constant bandwidth filters and SVM classifier.

کلیدواژه‌ها [English]

  • Self-paced Brain Computer Interface
  • Constant-Q filters
  • Probabilistic classification vector machines

[1]  Wolpaw J.R., Birbaumer N., McFarland D.J., Pfurtscheller G., Vaughan T.M., Brain-computer interfaces for communication and control; Clin. Neurophysiol., 2002;  131: 767-791.

[2]  Scherer R., Schloegl A., Lee F., Bischof H., Jansa J., Pfurtscheller G., The self-paced Graz brain–computer interface: methods and applications; Comput. Intell. Neurosci., 2007; 7982.

[3]  Mason S.G., Birch G.E. A brain-controlled switch for asynchronous control applications; IEEE Trans. Biomed. Eng., 2000; 47: 1297-1307.

[4]  Pfurtscheller G., Lopes da Silva F.H., Event-related EEG/MEG synchronization and     desynchronization: basic principles; Clin Neurophysiol., 1999; 110: 1842-1857.

[5]  Kosslyn S.M., Ganis G., Thompson W.L., Neural foundations of imagery; Nat Rev Neurosci., 2001; 2(9): 635-642.

[6]  Pfurtscheller G., Neuper C., Motor imagery activates primary sensorimotor area in humans; Neuroscience Letters, 1997; 239: 65-68.

[7]  Hasan B.A.S., Gan J.Q., Unsupervised movement onset detection from EEG recorded during self-paced real hand movement; Med. Biol. Eng. Comput., 2010; 48: 245-253.

[8]  Millan J. del R., Mourino J., Asynchronous BCI and local neural classifiers: An overview of the adaptive brain interface project; IEEE Trans.  Neural Syst. Rehabil. Eng., 2003; 11: 159-161.

[9]  Mason S.G., Birch.G.E., A brain-controlled switch for asynchronous control applications; IEEE Trans. Biomed. Eng., 2000; 47: 1297-1307.

[10]             Bashashati A., Mason S., Ward R.K., Birch G.E.,   An improved asynchronous brain interface: making use of the temporal history of the LF-ASD feature vectors; J. Neural. Eng., 2006; 3: 87-94.

[11]             Fatourechi M., Ward R.K., Birch G.E.A., self-paced brain–computer interface system with a low false positive rate; J. Neural Eng., 2008; 5: 9-23.

[12]             Gala´n F., Oliva F., Guardia J., Using mental tasks transitions detection to improve spontaneous mental activity classification; J. Med. Biol. Eng Comput., 2007; 45(6): 603–612.

[13] Solis-Escalante T., Muller-Putz G.R., Pfurtscheller G.,  Overt foot movement detection in one single Laplacian EEG derivation; J. Neurosci. Methods, 2008; 175: 148-153.

[14]             Pfurtscheller G., Solis-Escalante T., Could the beta rebound in the EEG be suitable to realize a ‘‘brain switch’’?; Clin. Neurophysiol., 2009; 120: 24-29.

[15]             Pfurtscheller G., Solis-Escalante T., Ortner R., Linortner P., Müller-Putz G.R., Self-Paced Operation of an SSVEP-Based Orthosis With and Without an Imagery-Based “Brain Switch:” A Feasibility Study Towards a Hybrid BCI; IEEE Trans. Neural Syst. Rehabil. Eng., 2010; 18(4): 409-414.

[16]             Yong X., Fatourechi M., Ward R.K., Birch G.E., The Design of a Point-and-Click System by Integrating a Self-Paced Brain–Computer Interface With an Eye-Tracker; IEEE J. Emerg. & selected topics in circuits and syst., 2011; 1(4): 590-602.

[17]             Yong X., Fatourechi M., Ward R.K., Birch G.E., Automatic artifact removal in a self-paced hybrid brain- computer interface system; J. of NeuroEng. and Rehab., 2012; 9:50.

[18]             Chen H., Tiˇno P., Yao X., Probabilistic Classification Vector Machines; IEEE Trans. Neural Net., 2009; 20: 901-914. 

[19] Leeb R., Friedman D., Müller-Putz G.R., Scherer R., Slater M., Pfurtscheller G., Self-Paced (Asynchronous) BCI Control of a Wheelchair in Virtual Environments: A Case Study with a Tetraplegic, Computational Intelligence and Neuroscience, 2007; Article ID 79642, 8 pages, 2007. doi:10.1155/2007/79642.

[20]             Leeb R., Friedman D., Scherer R., Slater M., Pfurtscheller G., EEGbased "walking" of a tetraplegic in virtual reality In Maia Brain Computer Interfaces; Workshop-Challenging Brain Computer Interfaces: Neural Eng. Meets Clin. Needs in Neurorehabil., 2006; 43-44.

[21]             Lotte F., Renard Y., Lécuyer A., Self-Paced Brain-Computer interaction with virtual worlds: A quantitative and qualitative study ‘Out-Of-The-Lab’ Proc; 4th Int’l Brain-Computer Interface Workshop and Training Course, 2008.

[22]             Mohammadi R., Mahloojifar A., Coyle D A Combination of Pre- and Postprocessing Techniques to Enhance Self-Paced BCIs Advances in Human-Computer Interaction; 2012; Article ID 185320, 10 pages, 2012. doi:10.1155/2012/185320

[23]             Bello J., Daudet L., Abdallah S., Duxbury C., Davies M., Sandler M, A tutorial on onset detection in musical signa.ls; IEEE Trans. Speech and Audio Proc., 2005; 13: 1035–1047.

[24]             Belankertz B., “Constant-Q transform” http://www.user.tu-berlin.de/blanker/drafts.html

[25] Wang T., Deng J., He B Classifying EEG-based motor imagery tasks by means of time–frequency synthesized spatial patterns; Clin. Neurophysiol., 2004; 115: 2744-2753.

[26] Graimann B., Huggins J.E., Levine S.P., Pfurtscheller G., Visualization of Significant ERD/ERS patterns in multichannel EEG and ECoG data; Clin. Neurophysiol, 2002; 113: 43- 47.

[27]             Lotte F., Congedo M., Lecuyer A., Lamarche F., Arnaldi B.,  A review of classification algorithms for EEG-based brain-computer interfaces; J. Neural Eng., 2007; 4: 1-13.

[28]             Platt J., Probabilistic outputs for support vector machines and comparison to regularize likelihood methods; in Advances in Large Margin Classifiers, A.J. Smola, P. Bartlett, B. Schoelkopf, and D. Schuurmans, Eds. Cambridge, MA: MIT Press, 2000; pp. 61–74.

[29]             Tipping M.E., sparse Bayesian learning and the relevance vector machine; J. Mach. Learn. Res., 2001; 1: 211–244.

[30]             Rätsch G., Onoda T., Müller K.R., Soft margins for adaboost; Mach. Learn., 2001; 42(3): 287–320.

[31]             http://www.cs.bham.ac.uk/~hxc/

[32]             Townsend G., Graimann B., Pfurtscheller G., Continuous EEG classification during motor imagery-simulation of an asynchronous BCI; IEEE Trans. Neural Syst. Rehabil. Eng., 2004; 12: 258–265.

[33]             Chang C.C., Lin C.J., 2001 LIBSVM: a library for support vector machines. Software available at <http://www.csie.ntu.edu.tw/cjlin/libsvm>.

[34]             Mohammadi R., Mahloojifar A., Onset foot movement detection using 1-channel EEG in self-paced Brain Computer Interface; 20th Iranian Conference on Biomedical Engineering, Tehran, Iran, 2011.

[35]             Qian K., Nikolov P., Huang D., Fei D., Chen X., Bai O., A motor imagery-based online interactive brain-controlled switch: Paradigm development and preliminary test; Clin Neurophysiol, 2010; 121: 1304-1313.

[36] Mohammadi R., Mahlooji A., Chen H., Coyle D., EEG Based Foot Movement Onset Detection with the Probabilistic Classification Vector Machine; ICONIP 2012; Part IV, LNCS 7666, 356–363.