نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانش‌آموختة کارشناسی ارشد، گروه مهندسی پزشکی، دانشکده مهندسی، دانشگاه شاهد

2 استادیار، گروه مهندسی پزشکی، دانشکده مهندسی برق و کامپیوتر، دانشگاه خواجه نصیرالدین طوسی

3 استادیار، گروه گفتاردرمانی، دانشکده توانبخشی، دانشگاه علوم پزشکی جندی شاپور اهواز

10.22041/ijbme.2012.13118

چکیده

پرخیشومی از رایج‌ترین اختلالات در کودکان دارای شکاف کام است. عموماً برای کاهش این نقیصه نیاز به جراحی است و بنابراین ارزیابی خیشومی بودن برای بررسی تأثیر جراحی و همچنین طراحی جلسات گفتار درمانی- که بعد از عمل‌های جراحی نیاز است- حیاتی است. استفاده از مدل‌های تمام قطب مانند ARبرای مدل‌سازی سیستم لوله صوتی افراد سالم رایج و معتبر هستند؛ اما وجود کانال ارتباطی بین حفره دماغی و دهانی افراد دارای شکاف کام، منجر به اضافه شدن صفر به تابع تبدیل فیلتر لوله صوتی شده و  درنتیجه مدل مذکور برای فیلتر لوله صوتی این افراد دقیق نیست. بر این اساس در این تحقیق روش کمّی جدیدی برای تخمین میزان پرخیشومی بودن ارائه شده است. در روش ارائه شده میزان پرخیشومی بودن با کمِیتی که از محاسبه فاصله بین بردار ضرایب کپستروم استخراج شده از ضرایب مدل ARو مدل ARMA  بدست آمده، ارزیابی شد. روش k-meansو روش بیز برای یافتن حد آستانه مناسب بمنظور طبقه‌بندی دادگان به کار رفت. با اجرای الگوریتم پیشنهادی برای مجموعه دادگان شامل واکه‌های /a/ استخراج شده از کلمه آزمون /pamap/ که 13 فرد دارای شکاف کام و 22 فرد سالم آنرا بیان کردند، صحت تراز شده 18/82 درصد برای طبقه‌بندی گویش‌ها و صحت تراز شده 72/97 درصد برای طبقه‌بندی افراد بدست آمد. از آنجایی که روش ارائه شده تنها به پردازش کامپیوتری دادگان نیاز دارد، در مقایسه با روش‌های بالینی دیگر، ساده‌ و غیر تهاجمی‌ است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Detection of Hypernasal Speech for Children with Cleft Palate

نویسندگان [English]

  • Ehsan Akafi 1
  • Mansour Vali 2
  • Negin Moradi 3

1 M.S.C, Department of Engineering, Shahed University,

2 Assistant professor, Department of Electrical & computer Engineering, K. N. Toosi University of Technology

3 Assistant professor, Speech Therapy Department, Jondishapour University of Medical sciences

چکیده [English]

Hypernasality is a frequently occurring resonance disorder in children with cleft palate. Generally an operation is necessary to reduce the hypernasality and therefore an assessment of hypernasality is imperative to quantify the effect of the surgery and design the speech therapy sessions which are crucial after surgery. In this study, a new quantitative method is proposed to estimate hypernasality. The proposed method used the fact that an Autoregressive (AR) model for vocal tract system of a patient with hypernasal speech is not accurate; because of the zeros appear in the frequency response of vocal tract system due to existence of extra channel between oral and nasal cavity of these patients. Therefore in our method hypernasality was estimated by a quantity calculated from comparing the distance between the sequences of cepstrum coefficients extracted from AR model and Autoregressive Moving Average (ARMA) model. K-means and Bayes theorem were utilized for finding a threshold value for proposed index to classify the utterances of subjects. We achieved the balanced accuracy up to 82.18% on utterances and 97.72% on subjects. Since the proposed method needs only computer processing of speech data, compare to other clinical methods it is provides a simple evaluation of hypernasality.

کلیدواژه‌ها [English]

  • Cleft palate
  • Hypernasality
  • Speech processing
  • Speech therapy
  • Cepstrum

[1]     F. Derakhshandeh, M. Poorjavad, The Study of Speech Disorders and Middle Ear Diseases Following Primary Palatoplasty in Children with Cleft Palate; J. Isfahan Med. Sch., 2011; 29 (130).

[2]     D. A. Cairns, J. H. L. Hansen, and J. E. Riski, A noninvasive technique for detecting hypernasal speech using a nonlinear operator; Ieee Trans. Biomed. Eng., 1996; 43(1): 35–45.

[3]     “An accelerometric measure as a physical co... [J Speech Hear Res. 1983] - PubMed - NCBI.”

[4]     M. Y. Chen, Acoustic parameters of nasalized vowels in hearing-impaired and normal-hearing speakers; J. Acoust. Soc. Am., 1995.

[5]     M. A. Redenbaugh and A. R. Reich, Correspondence between an accelerometric nasal/voice amplitude ratio and listeners’ direct magnitude estimations of hypernasality; J. Speech Hear. Res., 1985; 28(2): 273.

[6]     G. Fant, Acoustic theory of speech production. Walter de Gruyter, 1970.

[7]     S. Hawkins and K. N. Stevens, Acoustic and perceptual correlates of the non-nasal-nasal distinction for vowels; J Acoust Soc Am, 1985; 77(4).

[8]     J. Glass and V. Zue, Detection of nasalized vowels in American English in Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP’85., 1985; 10: 1569–1572.

[9]     D. A. Cairns, J. H. L. Hansen, and J. F. Kaiser, Recent advances in hypernasal speech detection using the nonlinear teager energy operator in Spoken Language, 1996. ICSLP 96., Fourth International Conference on, 1996; 2: 780–783.

[10]  L. R. Rabiner and R. W. Schafer, Digital processing of speech signals, Prentice-hall Englewood Cliffs; NJ, 1978; 100.

[11]  D. K. Rah, Y. I. KO, C. Lee, and D. W. Kim, A noninvasive estimation of hypernasality using a linear predictive model;  Ann. Biomed. Eng., 2001; 29(7): 587–594.

[12]  P. Vijayalakshmi, M. R. Reddy, and D. O’Shaughnessy, Acoustic analysis and detection of hypernasality using a group delay function; Biomed. Eng. IEEE Trans., 2007; 54(4): 621–629.

[13]  P. Vijayalakshmi, T. Nagarajan, and V. Jayanthan Ra, Selective pole modification-based technique for the analysis and detection of hypernasality; in TENCON 2009-2009 IEEE Region 10 Conference, 2009, pp. 1–5.

[14]  G. S. Lee, C. P. Wang, C. C. H. Yang, and T. B. J. Kuo, Voice low tone to high tone ratio: a potential quantitative index for vowel [a:] and its nasalization; Biomed. Eng. IEEE Trans., 2006; 53(7): 1437–1439.

[15]  G. Castellanos, O. D. Castrillón, and E. Guijarro, Multivariate analysis techniques for effective feature selection in voice pathologies. CASEIB, 2004.

[16]  K. J. Golding-Kushner, Therapy techniques for cleft palate speech and related disorders. Singular San Diego, 2001.

[17]  A. Giovanni, M. Ouaknine, B. Guelfucci, P. Yu, M. Zanaret, and J. M. Triglia, Nonlinear behavior of vocal fold vibration: the role of coupling between the vocal folds; J. Voice, 1999; 13(4): 465–476.

[18]  J. J. Jiang, Y. Zhang, and C. McGilligan, Chaos in voice, from modeling to measurement; J. Voice, 2006; 20(1): 2–17.

[19]  باغبان ک، ترابی‌نژاد ف، مرادی ن، بیگلریان الف، بررسی الگوی زمانی خیشومی شدگی در گفتار کودکان فارسی زبان 4 تا 12 ساله با و بدون شکاف کام، مجله پژوهش در علوم توانبخشی، دوره هشتم، شماره سوم،1391.

[20]  S. Ha and D. P. Kuehn, Temporal Characteristics of Nasalization in Speakers with and Without Cleft Palate; Cleft Palate. Craniofac. J., 2011; 48(2): 134–144.

[21]  A. Gray Jr and J. Markel, A spectral-flatness measure for studying the autocorrelation method of linear prediction of speech analysis; Acoust. Speech Signal Process. Ieee Trans., 1974;  22(3): 207–217.

[22]  A. Gray Jr and J. Markel, Distance measures for speech processing; Acoust. Speech Signal Process. Ieee Trans., 1976; 24(5): 380–391.