بررسی تأثیر حرکت دیوارة قلب بر دبی جریان ضربانی در شریان الاستیک کرونری

نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 کارشناس ارشد مهندسی پزشکی، دانشکده مهندسی پزشکی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات

2 دانشیار، دانشکدة مهندسی پزشکی، دانشگاه صنعتی امیرکبیر (پلی‌تکنیک)

10.22041/ijbme.2011.13133

چکیده

شریان کرونری وظیفة خون‌رسانی به عضله قلب را بر عهده ‌دارد. این شریان در هر چرخه قلبی بر اثر حرکت قلب تغییرشکل می‌دهد. در این پژوهش تأثیر این تغییر شکل، بر همودینامیک شریان کرونری بررسی شده است. حرکت به صورت اعمال انحنایی متغیر با زمان، بر هندسة شریان کرونری مدلسازی شده است. به طوری که یک مدل از شریان کرونری ساخته شده و حرکت انتهای آن به گونه‌ای اعمال شده ‌است که انحنای متغیر بوجودآمده در آن، در محدودة فیزیولوژیک باشد. پس از گسسته‌سازی، محاسبات عددی انجام شده و تأثیر حرکت شریان، بر دبی جریان عبوری خون در آن بررسی شده است. ضمن بررسی صحت مدل‌سازی، نتایج حاصل به شکل منحنی‌هایی از دبی جریان خون نسبت به زمان مورد بحث قرار گرفته‌اند. این نتایج مؤید این است که حرکت شریان بر دبی جریان خون در مقاطعی از طول شریان که به لحاظ آناتومی حرکت بیشتری داشته است، تأثیر بیشتری گذاشته و حتی بیشینة جریان را از زمان دیاستول به سیستول منتقل کرده است. این در حالی است که در این مناطق، جریان معکوسی نیز در زمان وقوع حداکثر دبی جریان در همسایگی ورودی شریان مشاهده می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of Cardiac Motion on Coronary Artery Flow rate

نویسندگان [English]

  • Alireza Hashemi Fard 1
  • Nasser Fatouraee 2
1 M.Sc Graduate, Faculty of Biomedical Engineering, Science and Research Branch of Islamic Azad University
2 Associate Professor, Faculty of Biomedical Engineering, Amirkabir University of Technology
چکیده [English]

The heart muscle is supplied via the coronary arteries. The coronary arteries are deformed in each cardiac cycle by the contraction of the myocardium. The aim of this work was to investigate the effects of physiologically idealized cardiac-induced motion on flow rate in human left coronary arteries. The blood flow rate were numerically simulated in an elastic modeled left anterior descending coronary artery (LAD) having a uniform circular cross section. Blood was considered to be a non-Newtonian fluid and Arterial motion was specified based on monoplane physiologically idealized bending. Simulations were carried out with dynamic pressure difference conditions between inlet and outlet in both fixed and moving LAD models, to evaluate the relative importance of LAD motion, flow rate, and the interaction between motion and time-averaged flow rate. LAD motion was caused variations in time-averaged flow rate in the moving LAD models as compare as the fixed models. There was significant variability in the magnitude of this motion-induced flow variation. However, the magnification of time-averaged flow rate is depending to specification of the cardiac motion. Furthermore, the effects of pressure pulsatility dominated LAD motion induced effects; specifically, there were local flow variation and secondary flow in the simulations conducted in moving LAD models.

کلیدواژه‌ها [English]

  • Coronary artery
  • Cardiac Motion
  • Fluid-Structure Interaction (FSI)
  • Time Varying Curvature
  • Artery Elasticity

[1] Keshavarz Motlagh Shirazi M., Tahlilerooz; www.Tahlilerooz.ir, Tahlilerooz Ejtemaee News Paper, Aug 1, 2009, retrieved Sep 19, 2009, http://tahlilerooz.ir/newspdf/702/4.pdf.

[2] World Health Organization, "The World health Report," 2004, retrieved November 25, 2005, http://www.who.ing/whr/2004/annex/topic/en/annex_2_en.pdf.

[3] World Health Organization, "The World health Report," 2002, retrieved November 26, 2005, http://www.who.int/whr/2002/annex.en/index.html.

[4] American Heart Association, http://www.americanheart.org.

[5] Perctold K., Rappitsch G., Low M., Friedman M.H., Kuban B.D., Computer simulation of pulsatile flow in an anatomically realistic human left coronary artery bifurcation model; BED Advances in Bioengineering ASME, 1995; 31: 193-194.

[6] Balasubramanian K., An experimental investigation of steady flow at an arterial bifurcation; Georgia Institute of Technology, Thesis, 1980.

[7] Reuderink P.J., Analysis of the flow in a 3D distensible model of the carotid artery bifurcation;  Environment Technical University Thesis, 1991.

[8] Feigl E.O., Coronary physiology; Physiol. Re, 1983; 63: 1-205.

[9] Gregg, D.E., Coronary Circulation in Health and Disease, Philadelphia : Lea & Febiger, 1950.

[10] Hoffman J.I., Spaan J.A., Pressure-flow relations in coronary circulation; Physiol. Re, 1990; 70: 331-390.

[11] Klocke F.J., Ellis A.K., Control of coronary blood flow; Annu. Rev. Med, 1980; 31: 489-508.

[12] Spaan J.A., Coronary Blood Flow. Mechanics, Distribution and Control, Dordrecht : Kluwer Academic, 1991.

[13] Westerhof N., Stergiopulos N, Noble M.I., Snapshots of Hemodynamics. An Aid for Clinical Research and Graduate Education, Dordrecht : Kluwer Academic, 2004.

[14] Zamir M., The Physics of Coronary Blood Flow, New York : AIP Press, 2005.

[15] Bedaux W.L., Hofman M.B., Visser C.A., van Rossum A.C., Simultaneous noninvasive measurement of blood flow in the great cardiac vein and left anterior descending artery; J. Cardiovasc. Magn. Reso, 2001; 3: 227-235.

[16] Hofman M.B., van Rossum A.C., Sprenger M. Westerhof N., Assessment of flow in the right human coronary artery by magnetic resonance phase contrast velocity measurement: effects of cardiac and respiratory motion; Magn. Reson. Med, 1996; 35: 521-531.

[17] Ishibashi Y., et al., Phasic right coronary blood flow in a patient with right ventricular hypertension using transesophageal Doppler echocardiography; Cardiology, 1995; 86: 169-171.

[18] Li  A., Li  Z., Qu  Z., Wang  X., Xu  B., Yu J., Tian, J., A new echocardiographic system for assessment of epicardial and intramyocardial coronary flow in a swine model; Chin. Med. J, 2002; 115: 1889-1891.

[19] Akasaka T., Yoshikawa J., Yoshida K., Hozumi T., Takagi T., Okura H., Comparison of relation of systolic flow of the right coronary artery to pulmonary artery pressure in patients with and without pulmonary hypertension; Am. J. Cardiol, 1996; 78: 240-244.

[20] Gielen S., Strasser R.H., Kubler W.,  Haller C., Images in cardiovascular medicine. Coronary artery ectasia and systolic flow cessation in hypertrophic cardiomyopathy; Circulation, 1998; 97: 2372-2374.

[21] King R.B., Bassingthwaighte J.B., Temporal fluctuations in regional myocardial flows; Pflugers Arch, 1989; 413: 336-342.

[22] Petropoulakis P.N., Kyriakidis M.K., Tentolouris C.A., Kourouclis C.V., Toutouzas P.K., Changes in phasic coronary blood flow velocity profile in relation to changes in hemodynamic parameters during stress in patients with aortic valve stenosis; Circulation, 1995; 92: 1437-1447.

[23] Spaan J.A., Kolyva C., Wijngaard J., van den, Wee R., ter Horssen P., van, Piek J., Siebes M., Coronary structure and perfusion in health and disease; Phil Trans R Soc A, 2008; 366: 3137-3153.

[24] Davies J.E., Whinnett Z.I., Francis D. P., Manisty C.H., Aguado-Sierra J., Willson K., Foale R.A., Malik I. S., Hughes A.D., Parker K.H., Mayet J., Evidence of a dominant backward-propagating “suction” wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy; Circulation, 2006; 113: 1768–1778.

[25] Kolandavel M.K., Fruend E.T., Ringgaard S., Walker P.G., The effect oftime varying curvature on species transport in coronary arteries; Annals of BiomedicalEngineering, 2006: 34(12): 1820-1832.