مقایسه ویژگی‌های سیگنالی با استفاده از الگوریتم اصلاح شده DTW در مسئله تصدیق امضای پویا

نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 مربی، گروه بیوالکتریک، دانشکده مهندسی پزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی

2 استادیار، گروه بیوالکتریک، دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر

3 دانشیار، گروه بیوالکتریک، دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر

10.22041/ijbme.2010.13334

چکیده

تاکنون روش‌های بسیاری برای براورد میزان شباهت یا اختلاف سیگنال‌های زمانی معرفی شده‌اند. الگوریتم DTWاز جمله راهکارهای قدرتمندیست که علاوه بر توانائی فوق در زمینه‌های طبقه‌بندی، داده‌کاوی و تطابق ناحیه‌ای دو سیگنال نیز مورد توجه است. DTWبر پایه بهینه‌سازی فواصل نقاط دو سیگنال و با انبساط و انقباض محور زمان در هر نقطه قادر به یافتن نقاط متناظر است. در این مقاله با اصلاح قیود محلی حاکم بر DTWروشی برای ارزیابی میزان شباهت کلّی یا ناحیه‌ای دو سیگنال پیشنهاد می‌شود. الگوریتم مطرح شده در این مقاله علاوه بر افزایش دقت و قابلیت بالاتر در سنجش فاصله سیگنال‌ها و طبقه‌بندی با خطای کمتر، نسبت به تغییرات ساختاری و منبع تولید سیگنال زمانی نیز مقاوم‌تر از DTWمرسوم بوده و قابلیت تعمیم‌پذیری بیشتری از خود نشان می‌دهد. با استفاده از یک پایگاه دادگان ترکیبی متشکل از افراد ترک (از کشور ترکیه)، چینی و انگلیسی‌زبان و اعمال روش پیشنهادی مبتنی بر طبقه‌بندی کننده‌های فیشر، پنجره پارزن و ماشین بردار پشتیبان در مسئله تصدیق امضاء نشان داده می‌شود که ضمن کاهش 3/12% خطای طبقه‌بندی الگوها، در شرایط سطح آستانه عمومی خطای EERدر گروه جاعلان تصادفی و ماهر به ترتیب برابر 46/1% و 51/3% به‌دست آمده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of Function Features using Modified DTW for Dynamic Signature Verification

نویسندگان [English]

  • Saeed Rashidi 1
  • Ali Fallah 2
  • Farzad Towhidkhah 3
1 Instructor, Bioelectric Group, School of Biomedical Engineering, Science and Research Branch, Islamic Azad University
2 Assistant Professor, Bioelectric Group, School of Biomedical Engineering, Amir Kabir University of Technology
3 Associate Professor, Bioelectric Group, School of Biomedical Engineering, Amir Kabir University of Technology
چکیده [English]

Many methods are introduced for estimating the similarities or differences of time signals. One of theses methods, DTW algorithm, is also a utility for other domains including classification, data mining and matching regions between two time signals. DTW algorithm minimizes points distance between two signals by contracting or expanding the time axes to find the corresponding points. In this paper, with modification of the local constraints in DTW, a powerful method is proposed for measuring the global or local similarities between two signals. In addition to increasing the accuracy of signals distance measurements and decreasing the classification error, proposed algorithm is more stable than classic DTW against variations of structure and time signal source. The proposed method for dynamic signature verification was applied to a dataset of signatures from Turkish, Chinese and English people. The results of the experiments based on Fisher, Parzen Window and Support Vectors Machine classifications, showed that equal error rate (EER) is 1.46% and 3.51% with universal threshold for random and skilled forgeries, respectively.

کلیدواژه‌ها [English]

  • consistency
  • Data Mining
  • Dynamic signature verification
  • Dynamic time warping
  • Time Signal
[1]      Plamondon R., Srihari S. N., On-line and off-line handwriting recognition: A comprehensive survey; IEEE Trans. Pattern Anal. Machine Intelligence; 2000; 22(1): 63-84.

[2]      Fierrez J., Garcia J. O., Ramos D., Rodriguez J. G., HMM-based on-line signature verification: Features extraction and signature modeling; Pattern Recognition; 2007: 2325-2334.

[3]      Ketabdar H., Richiardi j., Drygajlo A., Global feature selection for on-lone signature verification; Proc. 12th  Conf. of the Int. Graphonomics Society; Solerno, Italy; 2005.

[4]      Feng H., Wah c., Online signature verification using a new extreme points warping technique; Pattern Recognition Letters; 2003; 24(1): 2943-2951.

[5]      Lee J., Yoon H., Soh J., Chan B., Chung Y. K., Using geometric extrema for segment-to-segment characteristics comparison in online signature verification; Pattern Recognition; 2004; 37: 93-103.

[6]      Kholmatov A., Yanikogla B., Identity authentication using improved online signature verification method; Pattern Recognition Letters; 2005; 26(15): 2400-2408.

[7]      Sakoe H., Chiba S., A Dynamic Programming Approach to Continuous Speech Recognition; Proc. of the Int. Congress on Acoustics; 1971; Paper 20 c 13.

[8]      Sakoe H., Chiba, S., Dynamic-Programming Algorithm Optimization for Spoken Word Recognition; IEEE Trans. Acoustics, Speech, and Signal Proc.; 1978; l(26): 43-49.

[9]      Gavrila D. M., Davis L. S., Towards 3-d model-based tracking and recognition of human movement: a multi-view approach; In Int. Workshop on Automatic Face- and Gesture-Recognition; IEEE Computer Society; Zurich; 1995.

[10]   Schmill M., Oates T., Cohen P., Learned models for continuous planning; In 7th Int. Workshop on Artificial Intelligence and Statistics; 1999.

[11]   Caiani E. G., Porta a., Baselli G., Turiel M., Muzzupappa S., Pieruzzi F., Crema C., Malliani A., Cerutti S., Warped-average template technique to track on a cycleby-cycle basis the cardiac filling phases on left ventricular volume; IEEE Computers in Cardiology; 1998; 25: 73-76.

[12]   Chu, S., Keogh, E., Hart, D., Pazzani, M., Iterative Deepiening Dynamic Time Warping for Time Series; Proc. of the 2nd SIAM Int. Conference on Data Mining; Virginia; 2002.

[13]   Keogh E., Exact Indexing of Dynamic Time Warping; In 28th Int. Conference on Very Large Data Bases; Hong Kong; 2002: 406-417.

[14]   Myers C. S., A Comparative Study of Several Dynamic Time Warping Algorithms for Speech Recognition; Master's Thesis MIT; 1980.

[15]   Keogh E., Pazzani M., An Enhanced Representation of Time Series Which Allows Fast and Accurate Classification, Clustering and Relevance Feedback; Proc. Of the 14th Int. Conference of Knowledge Discovery and Data Mining; 1998; 239-241.

[16]   رشیدی سعید، فلاح علی، توحیدخواه فرزاد، اصلاح الگوریتم DTW در راستای افزایش دقت و استحکام سنجش شباهت سری‌های زمانی و کاربرد آن در تصدیق امضاء، چهاردهمین کنفرانس کامپیوتر ایران، دانشگاه امیرکبیر؛ اسفند 1387.

[17]   The First International Signature Verification Competition (SVC 2004); http://www.cs.ust.hk/svc 2004.

[18]   SigSA; On-line Handwritten Signature Database, http://biometrics.sabanciuniv.edu/sigsa.

[19]   Kholmatov A., Yanikoglu B., Susig: an on-line signature database, associated protocols and benchmark results; Pattern Analysis & Applications; 2008; 20-26.

[20]   رشیدی سعید، فلاح علی، توحیدخواه فرزاد، سیستم تصدیق امضای پویای دو مرحله‌ای مبتنی بر ویژگی‌های پارامتری و سیگنالی، شانزهمین کنفرانس مهندسی پزشکی ایران، دانشگاه علوم پزشکی تهران؛ دی 1388.

[21]   Yeung D. Y., Chang H., Xiong Y., George S., Kashi R., Matsumoto T., Rigoll G., SVC2004: First international signature verification competition; In Proc. of Int. Conf. on Biometric Authentication; Springer LNCS-3072; 2004; 16-22.

[22]   Lei H., Palla S., Govindaraju V.,, ER2: An Intuitive Similarity Measure for On-Line Signature Verification; Proc. 9th Int. Workshop Frontiers in Handwritting Recognition, 2004.

[23]   Fierrez-Aguilar J., Krawczyk S.,, Ortega-Garcia J., Jain A., Fusion of local and regional approaches for on-line signature verification, In Advances in Biometric Person Authentication; LNCS, eds. S. Z. Li, Z. Sun, T. Tan, S. Pankanti, G. Chollet, and D. Zhang, (Springer-Verlag, Berlin, Germany), 3781; 2005; 188-196.

[24]   Doroz R., Porwik P., Para T., Wrobel K., Dynamic Signature Recognition Based on Velocity Change of Some Features; Int. J. Biometrics; 2008; 1(1): 47-62.

[25]   Yanikoglu B., Kholmatov A., On-line signature verification using fourier descriptors; J. on Advances in Signal Processing; 2009.

[26]   Khalil M. I., Moustafa M., Abbas H. M., Enhanced DTW based on-line signature verification; In Proc. 16th IEEE Int. Conf. on Image Processing (ICIP); 2009; 2713-2716.

[27]   Gruber C., Gruber T., Krinninger S., Sick B., On-line Signature Verification With Support Vector Machines Based on LCSS Kernel Functions; IEEE Trans. Syst. Man Cybernet.Part B: Cyernetics; 2010; 31(6): 1059-1073.