بررسی تاثیر شرایط مکانیکی در تعیین کمی سینرژی عضلانی حین رکاب‌زنی برای کاربردهای توانبخشی FES

نوع مقاله: یادداشت کوتاه پژوهشی

نویسندگان

1 ﺩﺍﻧﺸﺠﻮی ﻛﺎﺭﺷﻨﺎﺳﻰ ﺍﺭﺷﺪ، ﮔﺮﻭﻩ ﺑﻴﻮﺍﻟﻜﺘﺮﻳﮏ، ﺁﺯﻣﺎﻳﺸﮕﺎﻩ ﻛﻨﺘﺮﻝ ﺳﻴﺴﺘﻢ ﻫﺎی ﺑﻴﻮﻟﻮﮋﻳﻜﻰ، ﺩﺍﻧﺸﻜﺪﮤ ﻣﻬﻨﺪﺳﻰ ﭘﺰﺷﻜﻰ، ﺩﺍﻧﺸﮕﺎﻩ ﺻﻨﻌﺘﻰ ﺍﻣﻴﺮﻛﺒﻴﺮ

2 ﺍﺳﺘﺎﺩﻳﺎﺭ، ﮔﺮﻭﻩ ﻣﻬﻨﺪﺳﻰ ﭘﺰﺷﻜﻰ، ﺩﺍﻧﺸﻜﺪﮤ ﻣﻬﻨﺪﺳﻰ ﺑﺮﻕ ﻭ ﻛﺎﻣﭙﻴﻮﺗﺮ، ﺩﺍﻧﺸﮕﺎﻩ ﺳﻤﻨﺎﻥ

3 ﺩﺍﻧﺸﻴﺎﺭ، ﮔﺮﻭﻩ ﺑﻴﻮﺍﻟﻜﺘﺮﻳﮏ، ﺁﺯﻣﺎﻳﺸﮕﺎﻩ ﻛﻨﺘﺮﻝ ﺳﻴﺴﺘﻢ ﻫﺎی ﺑﻴﻮﻟﻮﮋﻳﻜﻰ، ﺩﺍﻧﺸﻜﺪﮤ ﻣﻬﻨﺪﺳﻰ ﭘﺰﺷﻜﻰ، ﺩﺍﻧﺸﮕﺎﻩ ﺻﻨﻌﺘﻰ ﺍﻣﻴﺮﻛﺒﻴﺮ

10.22041/ijbme.2014.13559

چکیده

ﺑﺮﺍی ﺑﺎﺯﺗﻮﺍﻧﻰ ﺣﺮﻛﺘﻰ ﺑﻴﻤﺎﺭﺍﻥ ﺁﺳﻴﺐ ﻧﺨﺎﻋﻰ ﻣﻰﺗﻮﺍﻥ ﺍﺯ ﺭﻭﺵﻫﺎی ﻣﺒﺘﻨﻰ ﺑﺮ FES ﺑﻬﺮﻩ ﺑﺮﺩ ﻛﻪ ﺭﻛﺎﺏﺯﻧﻰ FES ﺍﺯ ﺟﻤﻠﺔ ﺍﻳﻦ ﺭﻭﺵﻫﺎ ﺍﺳﺖ. ﺍﻳﺠﺎﺩ ﻓﻌﺎﻟﻴﺖ ﺗﻨﺎﻭﺑﻰ ﺩﺭ ﻣﺎﻫﻴﭽﻪﻫﺎی ﺍﻧﺪﺍﻡ ﺗﺤﺘﺎﻧﻰ ﻭ ﭘﺎﻳﺪﺍﺭی ﻧﻘﻄﺔ ﺍﺗﻜﺎی ﺑﻴﻤﺎﺭ، ﺭﻛﺎﺏﺯﻧﻰ FES ﺭﺍ ﺩﺭ ﺯﻣﺮﻩ ﺗﻤﺮﻳﻦﻫﺎی ﻣﻔﻴﺪ ﺑﺮﺍی ﺍﻳﻦ ﻧﻮﻉ ﺑﻴﻤﺎﺭﺍﻥ ﻗﺮﺍﺭ ﺩﺍﺩﻩ ﺍﺳﺖ. ﺍﺻﻠﻰﺗﺮﻳﻦ ﻣﺸﻜﻞ ﭘﻴﺶ ﺭﻭی ﻛﺎﺭﺑﺮﺩ FES ﺩﺭ ﺗﻮﺍﻧﺒﺨﺸﻰ، ﺧﺴﺘﮕﻰ ﺯﻭﺩﻫﻨﮕﺎﻡ ﻋﻀﻠﻪﺍی ﺍﺳﺖ ﻛﻪ ﺗﺤﺮﻳﮏ ﺍﻟﻜﺘﺮﻳﻜﻰ ﺑﻪ ﺁﻥ ﺍﻋﻤﺎﻝ ﻣﻰﺷﻮﺩ. ﺍﺯ ﺳﻮی ﺩﻳﮕﺮ ﺳﻴﺴﺘﻢ ﻛﻨﺘﺮﻝ ﺣﺮﻛﺖ ﺑﺪﻥ ﺍﻧﺴﺎﻥ ﻫﻤﻮﺍﺭﻩ ﻣﺴﻴﺮ ﻛﻢﻫﺰﻳﻨﻪﺍی ﺭﺍ ﺍﺯ ﻣﻴﺎﻥ ﺑﻰﻧﻬﺎﻳﺖ ﻣﺴﻴﺮ ﻣﻤﻜﻦ ﺑﺮﺍی ﺍﻧﺠﺎﻡ ﻓﻌﺎﻟﻴﺖﻫﺎی ﺑﺪﻥ ﺩﺭ ﻧﻈﺮ ﻣﻰﮔﻴﺮﺩ. ﺑﺎﺯﺩﻩ ﺯﻳﺎﺩ ﺣﺮﻛﺘﻰ ﻭ ﺍﻳﺠﺎﺩ ﻛﻢﺗﺮﻳﻦ ﻣﻴﺰﺍﻥ ﺧﺴﺘﮕﻰ ﺩﺭ ﻋﻀﻠﻪﻫﺎ ﺍﺯ ﻭﻳﮋﮔﻰﻫﺎی ﺍﻳﻦ ﺳﻴﺴﺘﻢ ﻛﻨﺘﺮﻝ ﺍﺳﺖ. ﺍﺳﺎﺱ ﺍﻳﻦ ﻧﻮﻉ ﻓﻌﺎﻟﻴﺖ، ﺳﻴﻨﺮﮋی ﻧﺎﻣﻴﺪﻩ ﻣﻰﺷﻮﺩ ﻛﻪ ﺍﻣﻴﺪ ﺍﺳﺖ ﺑﺎ ﺑﻪ ﺧﺪﻣﺖ ﮔﺮﻓﺘﻦ ﺁﻥ، ﺭﻛﺎﺏﺯﻧﻰ FES ﺑﻪ ﺷﻴﻮﮤ ﻣﺆﺛﺮﺗﺮی ﺍﻧﺠﺎﻡ ﺷﻮﺩ. ﺩﺭ ﺍﻳﻦ ﭘﮋﻭﻫﺶ ﺑﻪ ﻛﻤﻰﺳﺎﺯی ﺳﻴﻨﺮﮋی ﻋﻀﻼﻧﻰ ﻣﻴﺎﻥ ﻋﻀﻠﻪﻫﺎی ﺍﺻﻠﻰ ﺩﺭ ﺭﻛﺎﺏﺯﻧﻰ ﺑﺎ ﺭﻭﺵ ﺗﺠﺰﻳﻪ ﻧﺎﻣﻨﻔﻰ ﻣﺎﺗﺮﻳﺲ ﻭ ﺑﺎ ﻣﺒﻨﺎی ﻛﻴﻨﺰﻳﻮﻟﻮﮋی ﭘﺮﺩﺍﺧﺘﻪ ﺷﺪﻩ ﺍﺳﺖ. ﭼﻬﺎﺭ ﺳﻴﻨﺮﮋی ﺑﻪﻋﻨﻮﺍﻥ ﺗﻌﺪﺍﺩ ﻣﻨﺎﺳﺐ ﻭ ﺑﻬﻴﻨﺔ ﺳﻴﻨﺮﮋیﻫﺎ ﺑﺮﺍی ﺗﻮﺻﻴﻒ ﺭﻛﺎﺏﺯﻧﻰ ﺩﺭ ﺷﺮﺍﻳﻂ ﻣﺨﺘﻠﻒ ﻣﻜﺎﻧﻴﻜﻰ ﺗﻌﻴﻴﻦ ﺷﺪ. ﻣﻌﻴﺎﺭ VAF ﺑﺎ ﺩﺭﻧﻈﺮ ﮔﺮﻓﺘﻦ ﭼﻬﺎﺭ ﺳﻴﻨﺮﮋی ﺑﺮﺍی ﺗﻮﺻﻴﻒ ﺭﻛﺎﺏﺯﻧﻰ ﺑﺎ ﺳﺮﻋﺖﻫﺎی 40، 50 ﻭ 60 ﺩﻭﺭ ﺑﺮ ﺩﻗﻴﻘﻪ ﺑﻪ ﺗﺮﺗﻴﺐ ﺑﺮﺍﺑﺮ 92±4، 92±3 ﻭ 91±4 ﺩﺭﺻﺪ ﻭ ﺑﺮﺍی ﮔﺸﺘﺎﻭﺭﻫﺎی 5، 7 ﻭ 9 ﻧﻴﻮﺗﻦﻣﺘﺮ ﺑﻪ ﺗﺮﺗﻴﺐ ﺑﺮﺍﺑﺮ 91±3، 92±5 ﻭ 92±4 ﺩﺭﺻﺪ ﺑﻪﺩﺳﺖ ﺁﻣﺪ. ﺳﻴﻨﺮﮋیﻫﺎی ﺍﺳﺘﺨﺮﺍﺝ ﺷﺪﻩ ﺩﺭ ﺳﺮﻋﺖﻫﺎی ﻣﺘﻔﺎﻭﺕ ﻭ ﮔﺸﺘﺎﻭﺭﻫﺎی ﻣﻘﺎﻭﻡ ﻣﺘﻔﺎﻭﺕ ﻧﻴﺰ ﺑﻪ ﻃﻮﺭ ﻣﻴﺎﻧﮕﻴﻦ ﺩﺍﺭﺍی ﻫﻤﺒﺴﺘﮕﻰ 4/98 ﺩﺭﺻﺪ ﻫﺴﺘﻨﺪ.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Influence of Mechanical Terms in Quantifying Muscle Synergy during Cycling for FES Rehabilitation Applications

نویسندگان [English]

  • Sohrab Barimani 1
  • Ali Maleki 2
  • Ali Fallah 3
1 M.Sc Student, Biological Systems Control Lab, Faculty of Biomedical Engineering, Amirkabir University of Technology
2 Assistant Professor, Biomedical Engineering Department, Electrical & Computer Engineering Faculty, Semnan University
3 Associate Professor, Biological Systems Control Lab, Faculty of Biomedical Engineering, Amirkabir University of Technology
چکیده [English]

FES based method used for rehabilitation of patients with spinal cord injury (SCI). One of these methods is FES cycling. FES cycling exercise has to be useful among SCI patients because of creating a periodic activity in the muscles of the lower extremities and stability of seating position. The major challenge for application of FES in rehabilitation is early fatigue occurrence in electrically stimulated muscles. Motor control system selects a low-cost path among the infinite possible route to the body's movements. High efficiency and the minimum rate of muscle fatigue are main characteristics of the motor control system. This type of control system is called muscle synergy. In this study, the quantification of muscle synergy between the core muscles in cycling has been done by non-negative matrix factorization (NMF) method and considering the kinesiology basis. Four synergies were determined as appropriate and optimal synergies to describe the cycling in different mechanical terms. VAF criteria with regard to the four synergies to describe cycling in speeds of 40, 50 and 60 rpm are 92±4, 92±3 and 91±4% respectively and torques, 5, 7 and 9 Nm are 91±3, 92±5 and 92±4% respectively. Correlation between Synergies extracted at different mechanical terms is 98.4 percent in average.

کلیدواژه‌ها [English]

  • Functional electrical stimulation
  • FES Cycling
  • Muscle synergy

[1]     Demchak T., Linderman J., Mysiw W., Jackson R., Suun J., Devor S., Effects of Functional Electric Stimulation Cycle Ergometry Training on Lower Limb Musculature in Acute Sci Individuals; Journal of Sports Science and Medicine, 2005; 4: 263-271.

[2]     Griffin L., Decker M., Hwang J., Wang B., Kitchen K., Ding Z., Ivy J., Functional electrical stimulation cycling improves body composition, metabolic and neural factors in persons with spinal cord injury; Journal of Electromyography and Kinesiology, 2009; 19: 614-622.

[3]     Gföhler M., Lugner P., Cycling by Means of Functional Electrical Stimulation; IEEE Trancactions on Rehabilitation Engineering, 2000; 8(2): 233-243.

[4]     Shumway-Cook A., Woollacott H., Motor Control – translating research into clinical practice; third edition, 2007.

[5]     SENIAM Project, Recommendations for sensor locations in hip or upper leg muscles, Retrieved 7 March 2014 from: http://seniam.org/quadricepsfemorisvastuslateralis. html

[6]     Manal K., Buchanan T., An Electromyogram- Driven Musculoskeletal Model of the Knee to Predict in Vivo Joint Contact Forces During Normal and Novel Gait Patterns; Journal of Biomechanical Engineering, 2013; 135(2): 0210141–0210147.

[7]     Akay M., d’Avella A., Tresch M., Handbook of Neural Engineering, Chapter 27, IEEE Engineering in Medicine and Biology Society, 2007.

[8]     Scholz M., Approaches to analyse and interpret biological profile data; Ph.D. thesis in University of Potsdam, Germany, 2006. Retrieved from: http://www.nlpca.org/pca_principal_component_a nalysis.html

[9]     Scholz M., Approaches to analyse and interpret biological profile data; Ph.D. thesis in University of Potsdam, Germany, 2006. Retrieved from: http://www.nlpca.org/index.html

[10] Hug F., Can muscle coordination be precisely studied by surface electromyography?; Journal of Electromyography and Kinesiology, 2011: 1-12.

[11] Raymond C.H., Joseph K., Gabriel Y.F., Muscle recruitment pattern in cycling: a review; Physical Therapy in Sport, Available online at www.sciencedirect.com, 2005.

[12] Biometrics Ltd, DataLOG WMX8, Retrieved 7 March 2014 from: http://www.biometricsltd.com/datalog.htm

[13] Shao Q., Bassett D.N., Manal K., Buchanan T.S., An EMG Musculoskeletal Model to Estimate Muscles and Joint Moments in Stroke Patients; Journal of Computer Biology and Medicine, 2009: 1083-1088.

[14] Torres-Oviedo G., Ting L., Muscle Synergies Characterizing Human Postural Responses; Journal of Neurophysiology, 2007: 2144-2156.

[15] d' Avella A., Bizzi E., Shared and specific muscle synergies in natural motor behaviors; Proceedings of the National Academy of Sciences, 2005; 102(8): 3076-3081.