بهینه سازی دمپر مغناطیسی دورانی هیبریدی با سطح قوسدار با کاربرد در پروتز زانو

نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 استاد، دانشکده مهندسی مکانیک، دانشگاه صنعتی شریف، تهران

2 دانشجوی دکتری مهندسی مکانیک، دانشکده مهندسی مکانیک، دانشگاه صنعتی شریف، تهران

10.22041/ijbme.2016.22213

چکیده

این تحقیق روی طراحی بهینة مفهوم هیبرید از دمپر مغناطیسی دورانی با روتور T شکل و نیز  سطح قوس­دار به­عنوان پروتز زانو متمرکز است. در این پروتز بیومکانیکی زانو، از سیال مغناطیسی برای ایجاد گشتاور ترمزی متغیر وابسته به میدان مغناطیسی استفاده­شده است. با اعمال میدان مغناطیسی، ویسکوزیتة سیال به­طور فعال برای دست­یابی به گشتاور ترمزی موردنظر کنترل می شود. پس از توضیح مختصری دربارة پیکربندی دمپر مغناطیسی دورانی موردنظر، معادلات گشتاور قابل دست­یابی ارائه شده­اند. در ادامه، مسئلة بهینه­سازی با هدف یافتن مقدار بهینه برای ابعاد هندسی دمپر برای به حداکثر رساندن گشتاور ترمزی فعال بررسی می­شود؛ درحالی­که گشتاور حالت غیرفعال و وزن دمپر در حد مجاز باشند. هدف این مقاله، رسیدن به حداکثر گشتاور ترمزی در حالت فعال به همراه به حداقل رساندن گشتاور حالت غیر فعال و وزن دمپر و همچنین دست­یابی به چگالی شار یکنواخت با توجه به نوع کاربرد دمپر اشاره­شده است. نتایج حاصل از دمپر مغناطیسی دورانی بهینه­شده با دمپر مرجع مقایسه شدند و سپس توضیحاتی دربارة بهبود عملکرد آن ارائه خواهد شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization of a Hybrid MR Rotary Damper with Waveform Boundary Using in a Prosthetic Knee

نویسندگان [English]

  • Hasan Sayyadi 1
  • Seyed Hamid Zare 2
1 Professor,School of Mechanical Engineering,Sharif University of Technology, Tehran, Iran
2 Ph.D Student, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
چکیده [English]

The study focuses on the optimal design of a hybrid rotary MR with waveform boundary T-shaped rotor as prosthesis knee. In the biomechanical prosthesis knee MR fluid to create a variable braking torque depending on the magnetic field is used. By applying a magnetic field, the viscosity of the fluid is actively controlled to achieve the desired braking torque. After a brief description of the configuration of the rotary damper; achievable braking torque formulas is presented. In the following, optimization problem aims to find the optimal geometry in order to maximize the on-state braking torque while off-state torque and weight are within the permitted range. Depending on the application of the referred damper, the maximum braking torque, minimizing torque at off-state, minimizing damper’s weight and have uniform flux density are under consideration. The results of the optimized rotary damper are compared with the reference brake. Then, the performance improvement of the optimized MR brake is discussed.

کلیدواژه‌ها [English]

  • hybrid MR brake
  • optimal design
  • prosthetic knee
  • T-shaped drum
  • waveform boundary

[1]S. H. Zareh, A. Sarrafan, A. A. A. Khayyat, and A. Zabihollah, “Intelligent semi-active vibration control of eleven degrees of freedom suspension system using magnetorheological dampers,” Journal of Mechanical Science and Technology, vol. 26, no. 2, pp. 323-334, 2012.

[2]   A. Hernandez, G. N. Marichal, A. V. Poncela, and I. Padron, “Design of intelligent control strategies using a magnetorheological damper for span structure,” Smart Structures and Systems, vol. 15, no. 4, pp. 931-947, 2015.

[3]   S. H. Zareh, A. Sarrafan, A. F. Jahromi, and A. Khayyat, “Linear quadratic Gaussian application and clipped optimal algorithm using for semi active vibration of passenger car,”Proc. IEEE International Conference on Mechatronics, Istanbul, Turkey, pp. 122-127, 2011.

[4]   S. J. Dyke, B. F. Spencer, M. K. Sain MK, and J. D. Carlson, “An experimental study of MR dampers for seismic protection,” Smart Materials and Structures, vol. 7, no. 5, pp. 693-704, 1998.

[5]   A. Sarrafan, S. H. Zareh, A. A. A. Khayyat, and A. Zabihollah, “Neuro-fuzzy control strategy for an offshore steel jacket platform subjected to wave-induced forces using magnetorheological dampers,” Journal of Mechanical Science and Technology, vol. 26, no. 4, pp. 1179-1196, 2012.

[6]  Z. D. Xu, D. H. Jia, and X. C. Zhang, “Performance tests and mathematical model considering magnetic saturation for magnetorheological damper,” Journal of Intelligent Material Systems and Structures, vol. 23, no. 12, pp. 1331-1349, 2012.

[7]  T. H. Nam, and K. K. Ahn, “New approach to designing an MR brake using a small steel roller and MR fluid,” Journal of Mechanical Science and Technology, vol. 23, no. 7, pp. 1911-1923, 2009.

[8]   X. Bai, N. M. Wereley, and W. Hu, “Maximizing semi-active vibration isolation utilizing a magnetorheological damper with an inner bypass configuration,” Journal of Applied Physics, vol. 117, no. 17, pp. 7111-7114, 2015.

[9]   C. Rossa, A. Jaegy, A. Micaelli, and J. Lozada, “Development of a multi layered wide-ranged torque magnetorheological brake,” Smart Materials and Structures, vol. 23, no. 2, pp. 25-28, 2014.

[10]  J. W. Lee, S. J. Ha, Y. K. Cho, K. B. Kim, and M. W. Cho, “Investigation of the polishing characteristics of metal materials and development of micro MR fluid jet polishing system for the ultra precision polishing of micro mold pattern,” Journal of Mechanical Science and Technology, vol. 29, no. 5, pp. 2205-2211, 2015.

[11]  F. Jonsdottir, E. T. Thorarinsson, H. Palsson, and K. H. Gudmundsson, “Influence ofparameter variations on the braking torque of a magnetorheological prosthetic knee,”Journal of Intelligent Material Systems and Structures, vol. 20, no. 6, pp. 659-667, 2009.

[12]  H. Naito, Y. Akazawa, K. Tagaya, T. Matsumoto, and M. Tanaka, “An ankle-foot orthosis with a variable-resistance ankle joint using a magnetorheological-fluid rotary damper,” Journal of Biomechanical Science and Engineering, vol. 4, no. 2, pp. 182-191, 2009.

[13] F. Jonsdottir, E. T. Thorarinsson, and O. Gutfleisch, “Rheology of perfluorinated polyether-based MR fluids with nanoparticles,” Journal of Intelligent Material Systems and Structures, vol. 21, pp. 1051-1060, 2010.

[14] J. D. Carlson, W. Matthis and J. R. Toscano, “Smart prosthetics based on magnetorheological fluids,” Smart Structures and Materials Proc. SPIE, Newport Beach, CA, USA, pp. 308-316, 2001.

[15] K. H. Gudmundsson, F. Jonsdottir, F. Thorsteinsson, and O. Gutfleisch, “Anexperimental investigation of unimodal and bimodal magnetorheological fluids withan application in prosthetic devices,” Journal of Intelligent Material Systems and Structures, vol. 22, no. 6, pp. 539-549, 2011.

[16]  J. L. Zite, F. Ahmadkhanlou, V. A. Neelakantan, G. N. Washington, and N. Gregory, “A magnetorheological fluid based orthopedic active knee brace,” Smart Structures and Materials,  2006, doi:10.1117/12.658693.

[17]  B. Liu, W. H. Li, P. B. Kosasih, and X. Z. Zhang, “Development of an MR-brake-based haptic device,” Smart Structures and Materials, vol. 15, no. 6, pp. 1960-1967, 2006.

[18]  M. Avraam, M. Horodinca, I. Romanescu, and A. Preumont, “Computer controlled rotational MR-brake for wrist rehabilitation device,” Journal of Intelligent Material Systems and Structures, vol. 21, no. 15, pp. 1543-1557, 2010.

[19] K. H. Gudmundsson, F. Jonsdottir, and F. Thorsteinsson, “A geometrical optimization of a magnetorheological rotary brake in a prosthetic knee,” Smart Structures and Materials, vol. 17, no. 3, pp. 23-35, 2010.

[20] H. Sayyaadi, and S. H. Zareh, “A new configuration in a prosthetic knee using of hybrid concept of a MR brake with a T-shaped drum incorporating an arc form surface,” Smart Structures and Systems, vol. 17, no. 2, pp. 275-296, 2016.

[21]  P. B. Nguyen, and S. B. Choi, “A new approach to magnetic circuit analysis and its application to the optimal design of a bi-directional magnetorheological brake,” Smart Materials and Structures, vol. 20, no. 12, 2011.

[22] Q. H. Nguyen, and S. B. Choi, “Selection of magnetorheological brake types via optimal design considering maximum torque and constrained volume,” Smart Materials and Structures, vol. 21, no. 1, 2012.

[23]  Q. H. Nguyen, and S. B. Choi, “Optimal design of a novel hybrid MR brake for motorcycles considering axial and radial magnetic flux,” Smart Materials and Structures, vol. 21, no. 5, 2012.

[24] H. Sayyaadi and S. H. Zareh, “Prosthetic knee using of hybrid concept of magnetorheological brake with a T-Shaped drum,”Proc. IEEE International Conference on Mechatronics and Automation, Beijing, China, pp. 721-726, Aug., 2015.

[25]  R. N. Kirkwood, H. A. Gomes, R. F. Sampaio, E. Culham, and P. Costigan, “Biomechanical analysis of hip and knee joints during gait in elderly subjects,” Acta Ortopedica Brasileira, vol. 15, no. 5, pp. 267-271, 2007.