نوع مقاله : مقاله کامل پژوهشی
نویسندگان
1 دانشآموخته کارشناسی ارشد ، دانشکده مهندسی برق، دانشگاه یزد، یزد
2 دانشیار، دانشکده مهندسی برق، دانشگاه یزد، یزد
3 استادیار، دانشکده مهندسی برق، دانشگاه یزد،یزد
چکیده
آشکارسازی پتانسیلهای وابسته به رخداد، یک پیشنیاز مهم در سیستمهای واسط مغز و کامپیوتر (BCI) مبتنی بر ERP است. برای افزایش درصد صحت طبقهبندی در این سیستمها، از روشهای فیلترینگ مختلفی استفاده میشود تا نرخ سیگنال به نویز بهبود یابد و در نتیجه تشخیص و طبقهبندی پتانسیلهای وابسته به رخداد آسان شود. پیش از این، عملکرد فیلترهای الگوی مکانی مشترک (CSP) و الگوی زمانی مشترک (CTP) که بهترتیب فیلترهای مکانی و زمانی هستند، در آشکارسازی مولفة P300 بررسی شده است. در این روشها، فیلترها به صورتی آموزش داده میشوند که واریانس یک کلاس، بیشینه شده و واریانس کلاس دیگر بهطور همزمان کمینه شود. نتایج نشان داده است که در سیستم P300Speller، عملکرد فیلترهای زمانی CTP بهتر از فیلترهای مکانی CSP است. در این مطالعه برای بهبود عملکرد روش CTP، الگوریتم ترکیبی الگوی زمانی مشترک وزندار (WCTP) پیشنهاد شده است. در این روش به هر دسته ویژگی، وزنی متناسب با اهمیت مقادیر ویژه مربوطه داده میشود. در واقع در این روش، ویژگیهای تولیدی توسط فیلترهای ابتدایی و انتهایی CTP وزن بیشتری در تصمیمگیری دارند. در روش ترکیبی بهکار رفته در این الگوریتم، از طبقهبندی کنندههای LDA استفاده شده است. با توجه به آزمایشهای انجام شده روی دو نمونة مورد بررسی و با 5 ثبت میانگینگیری شده، دسته ویژگی بهدست آمده توسط WCTP با میانگین درصد صحت طبقهبندی 2/90 بهترین عملکرد را از خود نشان داد که نشانگر بهبود تقریباً 4 درصدی نسبت به CTP است.
کلیدواژهها
موضوعات
عنوان مقاله [English]
P300 Component Detection by using Weighted Common Temporal Pattern
نویسندگان [English]
- Fereshte Salimian Rizi 1
- Vahid Abootalebi 2
- Mohammad Taghi Sadeghi 3
1 M.Sc Student, Electrical Engineering Department, Yazd University, Yazd, Iran
2 Associate Professor, Electrical Engineering Department, Yazd University, Yazd, Iran
3 Assistant Professor, Electrical Engineering Department, Yazd University, Yazd, Iran
چکیده [English]
Detection of Event Related Potentials (ERP) is an important prerequisite in the ERP-based Brain-Computer Interface (BCI) systems. In order to increase the classification accuracy in these systems, different filtering methods are used for improving the signal to noise ratio. This improvement facilitates the diagnosis and classification of the ERPs. In a number of studies, the performance of P300 detection systems which are based on common spatial pattern (CSP) and common temporal pattern (CTP) has been investigated. The former uses spatial filters while the latter is based on temporal filters. In these methods the filters are trained such that they maximize variance of one class and simultaneously minimize the other class variance. The associated results show that in P300 speller systems, the temporal filters outperform the spatial filters. In this study, in order to improve the performance of the CTP based systems, a Weighted Common Temporal Pattern (WCTP) algorithm which is a combined method is proposed. In this algorithm, each category of features has a weight based on the importance of its eigenvalues. In fact, the features produced by the initial and final CTP filters have more weight in the decision making process. In the combined method used in this algorithm, the LDA classifiers are used. It is shown that the set of features obtained by the WCTP method leads to an average classification accuracy of 90.2 percent which is about 4 percent better than the CTP method. The experiments are performed considering two different subjects on 5 trials.
کلیدواژهها [English]
- P300 component
- a common spatial pattern (CSP)
- a common temporal pattern (CSP)
- weighted common temporal pattern (WCTP)
[1] E. Donchin, K. M. Spencer, and R. Wijesinghe, "The mental prosthesis: Assessing the speed of a P300-based brain-computer interface", IEEE Trans. Rehab. Eng., vol. 8, pp. 174-179, 2000.
[2] J.S. Lin and W.C. Yang, “Wireless brain-computer interface for electric wheelchairs with EEG and eye-blinking signls,” Int. J. Innov. Comp. Inf. Control, vol.8, no. 9, pp 6011-6024, 2012.
[3] Y. Gu, O. F. Do Nascimento, M.-F. Lucas and D. Farina, "Identification of task parameters from movement-related cortical potentials", Medical & biological engineering & computing, vol. 47, no. 12, pp. 1257-1264, 2009.
[4] A. S. Royer and B. He, "Goal selection versus process control in a brain-computer interface based on sensorimotor rhythms", J. Neural Eng., vol. 6, pp. 16005, 2009.
[5] D.Jarchi, V.Abolghasemi and S. Sanei, “Source localizationof brain rhythms by empirical mode decomposition and spatial notchfiltering”, 17th European Signal Processing Conference (EUSIPCO2009)Glasgow, Scotland, August 24-28, 2009 .
[6] K. Thomas , C. Guan , C. Lau , A. Vinod and K. Ang, "A new discriminative common spatial pattern method for motor imagery brain–Computer interfaces", IEEE Trans. Biomed. Eng., vol. 56, no. 11, pp. 2730-2733, 2009.
[7] D. Zhu, J. Bieger, G. Garcia-Molina, and R. Aarts, "A survey of stimulation methods used in SSVEP-based BCIs", Journal of Computational Intelligence and Neuroscience, vol. Article ID 702357, 12 pages, 2010.
[8] D. Linden, "The P300: Where in the Brain Is It Produced and What Does It Tell Us?", The Neuroscientist, Vol. 11, No. 6, pp. 563-576, 2005.
[9] R. M. Chapman and H. R. Bragdon, "Evoked responses to numerical and nonnumerical visual stimuli while problem solving", Nature, vol. 203, pp. 1155-1157, 1964.
[10] S. Sutton, M. Braren, J. Zubin, and E. John, "Evoked correlates of stimulus uncertainty ", Science, vol. 150, pp. 1187-1188, 1965.
[11] M. Onofrj, D. Melchionda, A. Thomas and T. Fulgente, “Reappearance of event-related P3 potential in locked-in syndrome,” Cognitive Brain Research, vol.4, no.2, pp. 95-97, 1996.
[12] L. A. Farwell and E. Donchin, "Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials", Electroenceph. Clin. Neurophysiol., vol. 70, no. 6, pp. 510-523, 1988.
[13] D. J. McFarland, L. McCane, S. V. David, and J. R. Wolpaw, “Spatial filter selection for eeg-based communication,” J. Electroencephalogr. and clin.Neurophys., vol. 103, pp. 386–394, 1997.
[14] A. Soong and Z. Koles, “Principal-component localization of the sources of the background eeg,” IEEE Trans. on Biomed. Eng., vol. 42, no. 1, pp. 59–67, Jan. 1995.
[15] امینی زهرا, ابوطالبی وحید ,صادقی محمدتقی، "ارزیابی و مقایسه روشهای الگوهای مکانی مشترک و قطعهبندی هوشمند در آشکارسازی مولفه P300"،سیستمهای هوشمند در مهندسی برق،۵۴ -۳۷، ایران، سال دوم، شماره دوم، تابستان ۹۰.
[16] S. Lemm , B. Blankertz , G. Curio, K.-R. MÃller, “Spatio-spectral filters for improving classification of single trial EEG,” IEEE Trans. Biomed. Eng., vol. 52, no. 9, pp.1541 -1548 2005.
[17] G. Dornhege, B. Blankertz, M. Krauledat, F. Losch, G. Curio and K.-R. Muller, “Combined Optimization of Spatial and Temporal Filters for Improving Brain-Computer Interfacing,” IEEE Trans. Biomed. Eng., vol. 53, no. 11, pp. 2274-2281, 2006.
[18] K. Yu , K. Shen , S. Shao , W. C. Ng , K. Kwok , X. Li, “Common spatio-temporal pattern for single-trial detection of event-related potential in rapid serial visual presentation triage,” IEEE Trans. Biomed. Eng., vol. 58, no. 9, pp. 2513-2520, 2011.
A.S. Elsawy, S. Eldawlatly, M. Taher and G. M. Aly, "Performance Analysis of a Principal Component Analysis Ensemble Classifier for Emotiv Headset P300 Spellers," 36th EMBS, pp. 5032-5035, 2014.
[19] B. Blankertz, BCI Competition III Webpage. [Online]. Avail- able:http//ida. first.fraunhofer.de/projects/bci/competition iii. 2005.
[20] D. J. Krusienski, E.W. Sellers, F. ois Cabestaing, S. Bayoudh, D. J McFarland, T. M Vaughan and J. RWolpaw, “A comparison of classification techniques for the P300 Speller,” J. Neural Eng., vol.3, pp.299-305, 2006.
[21] H. Mirghasemi, R. Fazel-Rezai and M.B. Shamsollahi, “Analysis of P300 Classifiers in Brain Computer Interface Speller,” 31th IEEE EMBS Conf.on Med. and Biomed, pp.6205-6208, Aug. 30 2006.
[22] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm foroptimal margin classifiers,” in Proc. 5th Annu. ACM Workshop Comput.Learning Theory, pp. 144–152, 1992.