نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 گروه فیزیک و مهندسی پزشکی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی تهران، تهران - مرکز تحقیقات فناوری‌های بیومدیکال و رباتیک پزشکی، بیمارستان امام خمینی، تهران

2 گروه رادیولوژی، دانشکده‌ی علوم پزشکی ساری، دانشگاه علوم پزشکی مازندارن، ساری

3 دانشیار، گروه فیزیک و مهندسی پزشکی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی تهران، تهران - مرکز تحقیقات فناوری‌های بیومدیکال و رباتیک پزشکی، بیمارستان امام خمینی، تهران

10.22041/ijbme.2018.80819.1321

چکیده

در دهه‌های اخیر، به علت افزایش شیوع بیماری دیابت و عوارض مزمن آن، اندازه‌گیری قند­ خون، مدل‌سازی سیستم انسولین-گلوکز و کنترل قند­ خون از اهمیت ویژه‌ای برخوردار شده­ است. از آن‌جا که در دیابت نوع اول بدن انسولین ترشح نمی‌کند، سلول‌ها گلوکز را جذب نمی‌کنند و بنابراین سطح گلوکز خون افزایش می‌یابد. برای کنترل قند­ خون، باید انسولین به­صورت زیرپوستی و در شرایط پیچیده‌ی کنترل شده‌ی محیطی، به بدن تزریق شود. اگر سطح انسولین از محدوده‌ی فیزیولوژیکی طبیعی بالاتر رود، احتمال مرگ وجود دارد. درمان‌های مختلفی برای بیماری دیابت وجود دارد، که درمان اصلی آن انسولین-درمانی است. پایش سطح قند­ خون بیمار به­طور پیوسته در طول شبانه‌روز، راه­کار درمانی بسیار مناسبی است از جهت آن‌که با کم‌ترین میزان تزریق انسولین در زمان‌های مورد نیاز، مقدار قند­ خون بیمار را در محدوده­ی ایمن تحت کنترل قرار می­دهد. این امر از هایپرگلاسمی (مقدار قند­ خون بیش‌تر از 120mg/dl ) و هیپوگلاسمی (مقدار قند ­خون کم‌تر از mg/dl  65) بیمار جلوگیری می­کند. برای دست‌یابی به این هدف، یک مدل دوتاخیری موجود، به منظور مدل­سازی تغییرات سطح قند خون به طور پیوسته در طول شبانه­روز، توسعه داده شده است. برخی از پارامترهای این مدل با استفاده از الگوریتم ژنتیک جهت دست‌یابی به بیش‌ترین تطبیق بین دینامیک حاصل از مدل با دیتاهای اخذ شده در این مطالعه، تخمین زده شده­اند. در نتیجه، مدل توسعه داده شده در این پژوهش، قادر است دینامیک قند­ خون را به­طور پیوسته در طول شبانه­روز به دست آورد و به تبع آن، دینامیک انسولین مورد نیاز جهت تزریق به بیمار برای تحت کنترل قرار دادن میزان قند­ خون در محدوده­ی مجاز را پیش­بینی کند. بنابراین، این سیستم کنترلی قادر است از هیپوگلاسمی و هایپرگلاسمی شدن بیمار جلوگیری کند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Modeling Two Delay System of Insulin-Glucose based on Noninvasive Continuous Measurement

نویسندگان [English]

  • Reza Vosoughi 1
  • Armin Allahverdy 2
  • Sajjad Shafiekhani 1
  • Amir Homayoun Jafari 3

1 Department of Biophysics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran - Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, Iran

2 Department of Radiology, Sari School of Allied Medical Sciences, Mazandaran University of Medical Sciences, Sari, Iran

3 Associate Professor, Department of Biophysics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran - Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, Iran

چکیده [English]

In recent decades, due to the increased prevalence of diabetes and its chronic complications, glucose measurement, modeling of glucose-insulin system and glucose control have been especially important. Since the type I diabetes does not secrete insulin, cells do not absorb glucose, and thus the blood glucose level increase. In order to control your blood sugar, insulin should besubcutaneously injected into the body under complex, controlled conditions. If the level of insulin increases beyond the natural physiological range, there is a risk of death. There are various treatments for diabetes, the main treatment of which is insulin therapy. Monitoring the patient's blood sugar level continuously during the day and night is a very good treatment strategy, since it controls the patient's blood sugar level in a safe area with the lowest amount of insulin injected at the required times. This mechanism avoid the hyperglycemia (blood glucose levels greater than 120 mg/dl) and hypoglycemia (blood sugar less than 65 mg / dl). To achieve this goal, a two delay model has been developed to model blood glucose levels continuously during time. Some of the parameters of this model are estimated using the genetic algorithm to achieve the best fitness between the dynamics of the model with the experimental data obtained in this study. As a result, the developed model of this study can dynamically obtain blood glucose continuously during time, consequently it can predicts the insulin dynamics required to be injected into the patient to control the amount of blood glucose in the normal range. Therefore this controlling system is capable of preventing hypoglycemia and hyperglycemia.

کلیدواژه‌ها [English]

  • Modeling of Glucose-Insulin System
  • Two Delay Model
  • genetic algorithm

[1]     Association AD. Economic costs of diabetes in the US in 2007. Diabetes care 2008;31:596-615.

[2]     www.diabeti.ir.

[3]     Guyton AC, Hall J. Textbook of Medical Physiology Philadelphia: Saunders; 1986. NOTE: Additional information on Movement Strategies for Balance, Sensory Organization, Age-related changes in balance and CTSIB test result interpretation can be found in the Appendix C 1976.

[4]     Stern MP. Diabetes and cardiovascular disease: the “common soil” hypothesis. Diabetes 1995;44:369-74.

[5]     Surwit RS, Feinglos MN. The effects of relaxation on glucose tolerance in non-insulin-dependent diabetes. Diabetes Care 1983;6:176-9.

[6]     Deiss D, Bolinder J, Riveline J-P, Battelino T, Bosi E, Tubiana-Rufi N, et al. Improved glycemic control in poorly controlled patients with type 1 diabetes using real-time continuous glucose monitoring. Diabetes care 2006;29:2730-2.

[7]     Ackerman E, Gatewood LC, Rosevear JW, Molnar GD. Model studies of blood-glucose regulation. The bulletin of mathematical biophysics 1965;27:21-37.

[8]     Bergman RN, Cobelli C. Minimal modeling, partition analysis, and the estimation of insulin sensitivity.  Federation proceedings1980. p. 110.

[9]     Drozdov A, Khanina H. A model for ultradian oscillations of insulin and glucose. Mathematical and computer modelling 1995;22:23-38.

[10] Panunzi S, Palumbo P, De Gaetano A. A discrete single delay model for the intra-venous glucose tolerance test. Theoretical Biology and Medical Modelling 2007;4:35.

[11] Sorensen JT, Colton CK, Hillman RS, Soeldner JS. Use of a physiologic pharmacokinetic model of glucose homeostasis for assessment of performance requirements for improved insulin therapies. Diabetes Care 1982;5:148-57.

[12] Eren-Oruklu M, Cinar A, Quinn L, Smith D. Adaptive control strategy for regulation of blood glucose levels in patients with type 1 diabetes. Journal of process control 2009;19:1333-46.

[13]  نفیسی و,، گلپایگانی س.م.، سیستم تزریق هوشمند انسولین در بیماران دیابتی با استفاده از شبکه عصبی و الگوریتم فازی. مجله ی غدد درون‌ریز و متابولیسم ایران، دو ماهنامه پژوهشی مرکز تحقیقات غدد درون‌ریز و متابولیسم، 2003;5:203-10.

[14] Li J, Kuang Y, Mason CC. Modeling the glucose–insulin regulatory system and ultradian insulin secretory oscillations with two explicit time delays. Journal of Theoretical Biology 2006;242:722-35.

[15] Clarke WL, Cox D, Gonder-Frederick LA, Carter W, Pohl SL. Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes care 1987;10:622-8.

[16] Hall JE. Pocket Companion to Guyton & Hall Textbook of Medical Physiology E-Book: Elsevier Health Sciences; 2015.

[17] Friis-Jensen E. Modeling and simulation of glucose-insulin metabolism.  Congress Lyngby2007.

[18] De Gaetano A, Arino O. Mathematical modelling of the intravenous glucose tolerance test. Journal of mathematical biology 2000;40:136-68.

[19] Netter F, Colacino S. Atlas of human anatomy: Ciba-Geigy Summit. NJ; 1989.

[20] Salzsieder E, Albrecht G, Fischer U, Freyse E-J. Kinetic modeling of the glucoregulatory system to improve insulin therapy. IEEE Transactions on Biomedical Engineering 1985:846-55.

[21] Mahata A, Mondal SP, Alam S, Roy B. Mathematical model of glucose-insulin regulatory system on diabetes mellitus in fuzzy and crisp environment. Ecological Genetics and Genomics 2017;2:25-34.

[22] Sandhya S, Kumar D. Mathematical model for glucose-insulin regulatory system of diabetes mellitus. Advances in Applied Mathematical Biosciences 2011;2:39-46.

[23] Bede B, Gal SG. Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy sets and systems 2005;151:581-99.