رمزگشایی نیرو با استفاده از سیگنال‌های ثبت شده از قشر حرکتی موش صحرایی توسط رگرسیون خطی

نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی پزشکی، گروه بیوالکتریک، دانشکده‌ی مهندسی برق، دانشگاه علم و صنعت ایران، تهران

2 دانشیار، گروه بیوالکتریک، دانشکده‌ی مهندسی برق، دانشگاه علم و صنعت ایران، تهران

10.22041/ijbme.2018.79524.1316

چکیده

واسط‌ مغز-کامپیوتر سیستمی است که بر اساس فعالیت عصبی تولید شده توسط مغز عمل می‌کند و در سال‌های اخیر مورد توجه بسیاری از محققان قرار گرفته است. این واسط‌ها مستقل از مسیر خروجی متداول اعصاب محیطی و ماهیچه‌ها بوده و به دلیل توانایی آن‌ها در فراهم ساختن بعد جدیدی در ارتباطات و یا کنترل دستگاه برای افراد ناتوان، بسیار حائز اهمیت می‌باشند.  فعالیت عصبی مورد استفاده در واسط مغز-کامپیوتر، می‌تواند توسط روش‌های تهاجمی یا غیرتهاجمی مختلفی ثبت شده و توسط الگوریتم‌های رمزگشایی متفاوتی به سیگنال مطلوب تبدیل گردند، که هر یک نیز کارایی متفاوتی از خود نشان می‌دهند. در این مطالعه، از 3 موش صحرایی (رت) برای انجام حرکتی شامل فشردن یک کلید و دریافت یک قطره‌ی آب توسط اهرم متحرک (در صورت انجام صحیح وظیفه) استفاده شده است. با کاشت یک آرایه‌ی میکروالکترودی 16 کاناله در قشر حرکتی رت‌ها (به روش تهاجمی)، سیگنال مرتبط با نیروی اعمالی توسط دست، از مغز آن‌ها در حین انجام وظیفه ثبت شده و به‌طور هم‌زمان سیگنال نیروی دریافتی توسط سنسور نیز ذخیره گشته است. با انجام پیش‌پردازش‌های لازم روی داده‌های اسپایک و استخراج نرخ‌های آتش سیگنال، به عنوان بردار ویژگی، توسط لغزاندن یک پنجره‌ی گوسی روی قطارهای اسپایک، ورودی‌های لازم برای الگوریتم رمزگشایی، که در این‌جا رگرسیون خطی می‌باشد، به دست آمده است. از دو الگو به عنوان روش‌های ارزیابی استفاده شده است. الگوی اول، بر مبنای در نظرگرفتن 60% اولیه‌ی سیگنال به عنوان مجموعه‌ی آموزشی و 40% انتهایی به عنوان مجموعه‌ی آزمایشی استوار بوده و مبنای الگوی دوم، برعکس الگوی اول می‌باشد. از ضریب همبستگی بین بردار ویژگی و سیگنال آموزشی نیروی واقعی استفاده شده است، تا ویژگی‌هایی با ضریب همبستگی بیش از 3/0 به عنوان ویژگی‌های مطلوب انتخاب گردند تا کارایی الگوریتم رمزگشایی با اعمال روش انتخاب ویژگی نیز بررسی شود. روش‌های متعددی برای ارزیابی الگوریتم رمزگشایی وجود دارد، که در این پژوهش از معیار ضریب همبستگی و ضریب تعیین استفاده شده است که اندازه‌ی آن‌ها رابطه‌ی مستقیمی با کارایی روش رمزگشایی دارد. در این مطالعه، همبستگی و ضریب تعیین بین سیگنال نیروی واقعی و سیگنال پیش‌بینی شده توسط روش رگرسیون خطی، به صورت میانگین در سه جلسه و سه رت، به ترتیب  برابر با 56/0 و ‌2/0 برای الگوی اول و 55/0 و 30/0 برای الگوی دوم می‌باشد. این نتایج نشان ‌می‌دهد که با استفاده از نرخ آتش نورون‌های مغزی، می‌توان متغیرهای حرکتی مانند نیرو را پیش‌بینی کرد. هم‌چنین روش رگرسیون خطی روشی مناسب برای رمزگشایی سیگنال پیوسته‌ی نیرو می‌باشد و سیگنال واقعی را به خوبی دنبال می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Decoding Force using Signals Recorded from the Rat Motor Cortex by Linear Regression

نویسندگان [English]

  • Tahmineh Sadati 1
  • Mohammad Reza Daliri 2
1 Master Student, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
2 Associate Professor, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
چکیده [English]

A brain-computer interface is a system which works based on the neural activity created by the brain and it has attracted the attention of many researchers in recent years. These interfaces are independent of the usual pathway of peripheral and muscular nerves and are very important because of their ability to provide a new dimension in communication or control of a device for the disabled persons. The neural activity used in the brain-computer interface can be recorded by various invasive and non-invasive methods and can be converted to the desired signal by different decoding algorithms. In this study, 3 rats were used to perform a movement task which was pressing a key and receiving a drop of water by a mechanical arm for corrected trials. By implanting a 16-channel microelectrode array in the rat's motor cortex during an invasive process, the brain signals are recorded during the task, and simultaneously the signal received by the force sensor is also stored. By performing the necessary preprocessing on spikes and extracting the firing rates of signal as a feature vector by convolving a Gaussian window with the spike trains, the necessary inputs for the decoding algorithm, which is linear regression here, are obtained. Two patterns have been used for cross validation. The first pattern considers 60% of the data from the beginning of the signal as a train set and the remaining 40% of the signal as a test set and the second pattern is the opposite of the first one. Several methods have been used to evaluate the decoding algorithm used in the studies. In this paper, the correlation coefficient and coefficient of determination have been used. The correlation coefficient and coefficient of determination between the desired force and predicted force in linear resgression method, in average of three sessions for three rats, are equal to r=0.56 and =0.20 for the first pattern and r=0.55 and =0.30 for the second pattern respectively. These results show that firing rates of neurons are proper features to predict continous variables such as force. Besides, it can be concluded that linear regression is a suitable method for decoding a motor variable like force and follows the desired signal properly.

کلیدواژه‌ها [English]

  • Brain-Computer Interface
  • Decoding
  • Movement Task
  • Spike Trains
  • linear regression
  • Correlation Coefficient
  • Coefficient of Determination

[1]     Mano, M., Capi, G., Tanaka, N., & Kawahara, S. (2013). An artificial neural network based robot controller that uses rat’s brain signals. Robotics2(2), 54-65.

[2]     Vallabhaneni, A., Wang, T., & He, B. (2005). Brain—computer interface. Neural engineering, 85-121.

[3]     Foodeh, R., Khorasani, A., Shalchyan, V., & Daliri, M. R. (2017). Minimum Noise Estimate Filter: A Novel Automated Artifacts Removal Method for Field Potentials. IEEE Transactions on Neural Systems and Rehabilitation Engineering25(8), 1143-1152.

[4]     Lungu, I. A., Riehle, A., Nawrot, M. P., & Schmuker, M. (2017). Predicting voluntary movements from motor cortical activity with neuromorphic hardware. IBM Journal of Research and Development61(2/3), 5-1.

[5]     Chapin, J. K., Moxon, K. A., Markowitz, R. S., & Nicolelis, M. A. (1999). Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nature neuroscience2(7), 664-670.

[6]     Olson, B. P., Si, J., Hu, J., & He, J. (2005). Closed-loop cortical control of direction using support vector machines. IEEE Transactions on Neural Systems and Rehabilitation Engineering13(1), 72-80.

[7]     Francis, J. T., & Chapin, J. K. (2006). Neural ensemble activity from multiple brain regions predicts kinematic and dynamic variables in a multiple force field reaching task. IEEE Transactions on neural systems and rehabilitation engineering14(2), 172-174.

[8]     Khorasani, A., Beni, N. H., Shalchyan, V., & Daliri, M. R. (2016). Continuous Force Decoding from Local Field Potentials of the Primary Motor Cortex in Freely Moving Rats. Scientific reports6, 35238.

[9]     Liu, Y., Coon, W. G., de Pesters, A., Brunner, P., & Schalk, G. (2015). The effects of spatial filtering and artifacts on electrocorticographic signals. Journal of neural engineering12(5), 056008.

[10] Rey, H. G., Pedreira, C., & Quiroga, R. Q. (2015). Past, present and future of spike sorting techniques. Brain research bulletin119, 106-117.

[11] Song, W., Ramakrishnan, A., Udoekwere, U. I., & Giszter, S. F. (2009). Multiple types of movement-related information encoded in hindlimb/trunk cortex in rats and potentially available for brain–machine interface controls. IEEE Transactions on Biomedical Engineering56(11), 2712-2716.

[12] ‌‌Spüler, M., Sarasola-Sanz, A., Birbaumer, N., Rosenstiel, W., & Ramos-Murguialday, A. (2015, August). Comparing metrics to evaluate performance of regression methods for decoding of neural signals. In Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE (pp. 1083-1086). IEEE.