نویسندگان

1 دانشجوی دکتری مهندسی پزشکی، گروه مهندسی پزشکی، دانشکده‌ی مهندسی برق، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران

2 استادیار، گروه مهندسی پزشکی، دانشکده‌ی مهندسی برق، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران

3 استاد، قطب علمی کنترل و پردازش هوشمند، دانشکده‌ی مهندسی برق و کامپیوتر، دانشگاه تهران، تهران - پژوهشگر ارشد، پژوهشکده‌ی علوم شناختی، مرکز تحقیقات فیزیک نظری و ریاضیات، تهران - پژوهشگر ارشد، موسسه‌ی پزشکی هنری فورد، دیترویت، میشیگان، ایالات متحده‌ی آمریکا

10.22041/ijbme.2018.89763.1370

چکیده

اختلال در ارتباطات عمل‌کردی مربوط به شبکه‌ی حالت پیش‌فرض در مراحل اولیه‌ی بیماری آلزایمر گزارش شده است. به تازگی، ویژگی غیرایستانی شبکه­های مغزی، با توجه به این‌که ارتباطات عمل‌کردی درون و مابین این شبکه­ها در طول زمان، حتی در شرایطی که مغز انسان در حالت استراحت است، تغییر می­کند، مورد توجه پژوهش‌گران قرار گرفته است. بنابراین، برای مطالعه‌ی کامل تغییرات ارتباطات عمل‌کردی در بیماری آلزایمر، لازم است که تغییرات اساسی الگوی دینامیک آن‌ها نیز بررسی شود. هدف از این مطالعه، بررسی الگوهای ارتباط عمل‌کردی دینامیک درون شبکه‌ی حالت پیش‌فرض در بیماران آلزایمر نسبت به افراد سالم می­باشد. در این مطالعه، روشی مبتنی بر رگرسیون منطقی تنک، برای تخمین ماتریس ارتباطات عمل‌کردی از داده­های تصویربرداری تشدید مغناطیسی عمل‌کردی در حالت استراحت ۲۴ بیمار آلزایمری و ۳۷ فرد سالم استفاده می­شود. برای تجزیه و تحلیل شبکه‌ی ارتباطات عمل‌کردی دینامیک، نمره‌ی تغییرات زمانی الگوی عمل‌کردی برای هر ناحیه‌ی مغزی تعریف می­شود که می­تواند چگونگی تغییرات الگوی عمل‌کردی یک ناحیه‌ی مغزی در طول زمان با استفاده از ارتباطات عمل‌کردی دینامیک آن ناحیه‌ی مغزی را کمی­سازی نماید. نتایج مقایسه‌ی گروهی نشان می­دهد که نمره‌ی تغییرات زمانی الگوی عمل‌کردی برخی از مناطق اصلی شبکه‌ی حالت پیش‌فرض مانند قشر قدامی مغز میانی و قشر تمپورال جانبی در بیماران آلزایمری به طور قابل توجهی افزایش می­یابد. هم‌چنین تجزیه و تحلیل متعارف ارتباطات عمل‌کردی استاتیک نشان می‌دهد که الگوی ارتباطات عمل‌کردی این نواحی در اثر بیماری آلزایمر مختل می­شود. این یافته­ها نشان می­دهند که نواحی قشر قدامی مغز میانی و قشر تمپورال جانبی در بیماران آلزایمری احتمالا به سازمان‌دهی مجدد الگوی عمل‌کردی خود در راستای جبران کاهش کارایی عمل‌کردی ناشی از بیماری آلزایمر، تمایل دارند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Analysis of Dynamic Functional Connectivity of Default Mode Network in Alzheimer's Disease

نویسندگان [English]

  • Somayeh Maleki Balajoo 1
  • Davoud Asemani 2
  • Hamid Soltanian-Zadeh 3

1 Ph.D Student, Biomedical Engineering Department, Electrical Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran

2 Assistant Professor, Biomedical Engineering Department, Electrical Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran

3 Professor, CIPCE, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran - School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran - Radiology Image Analysis Lab, Henry Ford Health System, Detroit, MI, USA

چکیده [English]

Early alterations of functional connectivity (FC) within the default mode network (DMN) have been reported in Alzheimer’s disease (AD). Recently, the resting-state brain networks have been described with non-stationary profiles since inter- and intra-FC of the brain networks changes over time, even at rest. To fully understand the FC changes that characterize AD, the underlying change of its dynamic pattern needs to be captured. The purpose of this study was to evaluate dynamic FC (dFC) patterns within the DMN in patients with AD relative to healthy aging. Here, a sparse logistic regression (SLR) model was employed to estimate the dFC networks in patients with AD (n = 24) compared with healthy control group (n = 37) using resting-state functional magnetic resonance imaging (rs-fMRI) data.  To analyze the dFC network, we introduced a temporal variability-functional pattern (TV-FP) score, which shows how the functional pattern of a given region changes over time. This score is able to quantify the temporal patterns of regions involved in a dFC network. We compared TV-FP score across groups. The results indicate that the main regions of DMN, such as the anterior medial prefrontal cortex (aMPFC) and lateral temporal cortex (LTC), are associated with a significantly increased TV-FP score in the AD group when compared to the HC group. The FC pattern of these regions is impaired in AD according to a conventional static functional connectivity (sFC) analysis. These findings may suggest that aMPFC and LTC may tend to reorganize their functional pattern to compensate for the related functional deficiency due to AD.

کلیدواژه‌ها [English]

  • Resting-State Functional Magnetic Resonance Imaging
  • Dynamic Functional Connectivity
  • Temporal Variability of Functional Pattern
  • Default Mode Network
  • Alzheimer’s Disease

[1]     M. Prince, G. C. Ali, M. Guerchet, A. M. Prina, E. Albanese, and Y. T. Wu, "Recent global trends in the prevalence and incidence of dementia, and survival with dementia," Alzheimers Res Ther, vol. 8, no. 1, p. 23, Jul 30 2016.

[2]     G. M. McKhann et al., "The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease," Alzheimers Dement, vol. 7, no. 3, pp. 263-9, May 2011.

[3]     A. Tucholka et al., "Structural Connectivity Alterations Along the Alzheimer's Disease Continuum: Reproducibility Across Two Independent Samples and Correlation with Cerebrospinal Fluid Amyloid-beta and Tau," J Alzheimers Dis, vol. 61, no. 4, pp. 1575-1587, 2018.

[4]     M. E. Raichle, "The restless brain: how intrinsic activity organizes brain function," Philos Trans R Soc Lond B Biol Sci, vol. 370, no. 1668, May 19 2015.

[5]     R. L. Buckner et al., "Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory," J Neurosci, vol. 25, no. 34, pp. 7709-17, Aug 24 2005.

[6]     M. D. Greicius, G. Srivastava, A. L. Reiss, and V. Menon, "Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI," Proc Natl Acad Sci U S A, vol. 101, no. 13, pp. 4637-42, Mar 30 2004.

[7]     J. R. Andrews-Hanna, J. S. Reidler, J. Sepulcre, R. Poulin, and R. L. Buckner, "Functional-anatomic fractionation of the brain's default network," Neuron, vol. 65, no. 4, pp. 550-62, Feb 25 2010.

[8]     P. Fransson and G. Marrelec, "The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis," Neuroimage, vol. 42, no. 3, pp. 1178-84, Sep 01 2008.

[9]     K. Blennow, M. J. de Leon, and H. Zetterberg, "Alzheimer's disease," Lancet, vol. 368, no. 9533, pp. 387-403, Jul 29 2006.

[10] E. Klupp et al., "In Alzheimer's disease, hypometabolism in low-amyloid brain regions may be a functional consequence of pathologies in connected brain regions," Brain Connect, vol. 4, no. 5, pp. 371-83, Jun 2014.

[11] E. Klupp et al., "Prefrontal hypometabolism in Alzheimer disease is related to longitudinal amyloid accumulation in remote brain regions," J Nucl Med, vol. 56, no. 3, pp. 399-404, Mar 2015.

[12] G. F. Busatto, B. S. Diniz, and M. V. Zanetti, "Voxel-based morphometry in Alzheimer's disease," Expert Rev Neurother, vol. 8, no. 11, pp. 1691-702, Nov 2008.

[13] R. de Flores, R. La Joie, and G. Chetelat, "Structural imaging of hippocampal subfields in healthy aging and Alzheimer's disease," Neuroscience, vol. 309, pp. 29-50, Nov 19 2015.

[14] C. Sorg et al., "Selective changes of resting-state networks in individuals at risk for Alzheimer's disease," Proc Natl Acad Sci U S A, vol. 104, no. 47, pp. 18760-5, Nov 20 2007.

[15] M. Tahmasian et al., "The lower hippocampus global connectivity, the higher its local metabolism in Alzheimer disease," Neurology, vol. 84, no. 19, pp. 1956-63, May 12 2015.

[16] M. Tahmasian et al., "Based on the Network Degeneration Hypothesis: Separating Individual Patients with Different Neurodegenerative Syndromes in a Preliminary Hybrid PET/MR Study," J Nucl Med, vol. 57, no. 3, pp. 410-5, Mar 2016.

[17] C. Chang and G. H. Glover, "Time-frequency dynamics of resting-state brain connectivity measured with fMRI," Neuroimage, vol. 50, no. 1, pp. 81-98, Mar 2010.

[18] R. M. Hutchison, T. Womelsdorf, J. S. Gati, S. Everling, and R. S. Menon, "Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques," Hum Brain Mapp, vol. 34, no. 9, pp. 2154-77, Sep 2013.

[19] D. T. Jones et al., "Non-stationarity in the "resting brain's" modular architecture," PLoS One, vol. 7, no. 6, p. e39731, 2012.

[20] A. Liu, X. Chen, M. J. McKeown, and Z. J. Wang, "A sticky weighted regression model for time-varying resting-state brain connectivity estimation," IEEE Trans Biomed Eng, vol. 62, no. 2, pp. 501-10, Feb 2015.

[21] C. Y. Wee, S. Yang, P. T. Yap, D. Shen, and I. Alzheimer's Disease Neuroimaging, "Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification," Brain Imaging Behav, vol. 10, no. 2, pp. 342-56, Jun 2016.

[22] J. Kang, L. Wang, C. Yan, J. Wang, X. Liang, and Y. He, "Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches," Neuroimage, vol. 56, no. 3, pp. 1222-34, Jun 01 2011.

[23] D. A. Handwerker, V. Roopchansingh, J. Gonzalez-Castillo, and P. A. Bandettini, "Periodic changes in fMRI connectivity," Neuroimage, vol. 63, no. 3, pp. 1712-9, Nov 15 2012.

[24] E. A. Allen, E. Damaraju, S. M. Plis, E. B. Erhardt, T. Eichele, and V. D. Calhoun, "Tracking whole-brain connectivity dynamics in the resting state," Cereb Cortex, vol. 24, no. 3, pp. 663-76, Mar 2014.

[25] S. Maleki-Balajoo, D. Asemani, and H. Soltanian-Zadeh, "Sparse logistic regression for estimating time-varying functional connectivity networks: A simulation study," in 10th Iranian Conference on Machine Vision and Image Processing, Isfahan, Iran, 2017: IEEE.

[26] J. Zhang et al., "Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders," Brain, vol. 139, no. Pt 8, pp. 2307-21, Aug 2016.

[27] Alzheimer’s Disease Neuroimaging Initiative Available: http://adni.loni.usc.edu

[28] Statistical Parametric Mapping toolbox. Available: https://www.fil.ion.ucl.ac.uk/spm/

[29] C. G. Yan, X. D. Wang, X. N. Zuo, and Y. F. Zang, "DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging," Neuroinformatics, vol. 14, no. 3, pp. 339-51, Jul 2016.

[30] M. J. Lowe and D. P. Russell, "Treatment of baseline drifts in fMRI time series analysis," J. Comput. Assist. Tomogr, vol. 23, pp. 463–473, 1999.

[31] H. Lu et al., "Synchronized delta oscillations correlate with the resting-state functional MRI signal," Proc Natl Acad Sci U S A, vol. 104, no. 46, pp. 18265-9, Nov 13 2007.

[32] A. M. Kelly, L. Q. Uddin, B. B. Biswal, F. X. Castellanos, and M. P. Milham, "Competition between functional brain networks mediates behavioral variability," Neuroimage, vol. 39, no. 1, pp. 527-37, Jan 01 2008.

[33] M. D. Fox, D. Zhang, A. Z. Snyder, and M. E. Raichle, "The global signal and observed anticorrelated resting state brain networks," J Neurophysiol, vol. 101, no. 6, pp. 3270-83, Jun 2009.

[34] K. Murphy and M. D. Fox, "Towards a consensus regarding global signal regression for resting state functional connectivity MRI," Neuroimage, vol. 154, pp. 169-173, Jul 1 2017.

[35] N. Fallon, Y. Chiu, T. Nurmikko, and A. Stancak, "Functional Connectivity with the Default Mode Network Is Altered in Fibromyalgia Patients," PLoS One, vol. 11, no. 7, p. e0159198, 2016.

[36] M. E. Lynall et al., "Functional connectivity and brain networks in schizophrenia," J Neurosci, vol. 30, no. 28, pp. 9477-87, Jul 14 2010.

[37] M. Wainwright, " High dimensional graphical model selection using l1regularized logistic regression," Proceeding NIPS'06 Proceedings of the 19th International Conference on Neural Information Processing Systems, pp. 1465-1472  December 04 - 07, 2006 2006.

[38] L. Song, M. Kolar, and E. P. Xing, "KELLER: estimating time-varying interactions between genes," Bioinformatics, vol. 25, no. 12, pp. i128-36, Jun 15 2009.

[39] O. F. Lange , Grubmu¨ ller, H.,, "Generalized Correlation for Biomolecular Dynamics," PROTEINS: Structure, Function, and Bioinformatics, vol. 62, pp. 1053–1061, 2006.

[40] S. Mueller et al., "Individual variability in functional connectivity architecture of the human brain," Neuron, vol. 77, no. 3, pp. 586-95, Feb 06 2013.

[41] K. N. H. Dillen et al., "Functional Disintegration of the Default Mode Network in Prodromal Alzheimer's Disease," J Alzheimers Dis, vol. 59, no. 1, pp. 169-187, 2017.

[42] Y. Liang, Li, H., Zhang, J.,, "Deficiency in anterior-posterior connectivity of default-mode network in amnestic mild cognitive impairment: A combined task-related and resting-state fMRI study," presented at the 4th International Conference on Biomedical Engineering and Informatics (BMEI, Shanghai, China, 15-17 Oct. 2011, 2011.

[43] A. Badhwar, A. Tam, C. Dansereau, P. Orban, F. Hoffstaedter, and P. Bellec, "Resting-state network dysfunction in Alzheimer's disease: A systematic review and meta-analysis," Alzheimers Dement (Amst), vol. 8, pp. 73-85, 2017.

[44] S. D. Washington and J. W. VanMeter, "Anterior-Posterior Connectivity within the Default Mode Network Increases During Maturation," Int J Med Biol Front, vol. 21, no. 2, pp. 207-218, 2015.

[45] S. M. Smith et al., "Temporally-independent functional modes of spontaneous brain activity," Proc Natl Acad Sci U S A, vol. 109, no. 8, pp. 3131-6, Feb 21 2012.

[46] S. Ma, V. D. Calhoun, R. Phlypo, and T. Adali, "Dynamic changes of spatial functional network connectivity in healthy individuals and schizophrenia patients using independent vector analysis," Neuroimage, vol. 90, pp. 196-206, Apr 15 2014.

[47] P. Lin et al., "Dynamic Default Mode Network across Different Brain States," Scientific Reports, Article vol. 7, p. 46088, 04/06/online 2017.