نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی پزشکی، گروه بیوالکتریک، دانشکده‌ی مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 استاد، گروه بیوالکتریک، دانشکده‌ی مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

سرطان مری هشتمین سرطان شایع و ششمین سرطان منجر به مرگ در جهان می‌باشد. 80% از سرطان‌های مری در  سلول‌های سنگ‌فرشی رخ می‌دهند. در ایران، این نوع سرطان در استان گلستان شیوع بیش‌تری دارد. پیش از بروز این سرطان، ضایعاتی در بافت ا‌پیتلیوم مری به وجود می‌آید که پیش‌رفت و نفوذ این ضایعات به لایه‌های زیرین، منجر به بروز سرطان می‌شود. این بیماری در اکثر بیماران از یک مرحله‌ی پیش‌بالینیِ قابل تشخیص شروع می‌شود. این بیماری در صورت عدم مداخله‌ی درمانی مناسب، در اکثر موارد به سمت یک مرحله‌ی بالینی پیش‌رفت می‌کند. در مطالعات انجام شده پیرامون این نوع سرطان، مدلی برای پیش‌رفت این ضایعات (دیسپلازی) در سطح مزوسکوپیک ارائه نشده است. در این مقاله، مدلی بر پایه‌ی شبکه‌ای از نگاشت‌های لاجستیک کوپل شده برای مدل‌سازی عمل‌کرد بافت اپیتلیوم ارائه شده است. از تصاویر میکروسکوپیک مربوط به نمونه‌های بیوپسی بافت سالم و بافت با دیسپلازی خفیف، به عنوان دادگان این مطالعه استفاده شده است. طراحی ساختار و تنظیم پارامترهای این مدل بر مبنای فرضیاتی از ساختار و عمل‌کرد بافت اپیتلیوم، با وارد نمودن اطلاعاتی از هندسه‌ی فرکتالی این بافت انجام شده است. عمل‌کرد مدل، بر مبنای تغییرات نمای لیاپانوف در راستای ضخامت اپیتلیوم مورد ارزیابی قرار گرفته است. در این مدل، الگوی کاهشی این شاخص برای بافت سالم، از صحت و حساسیت مناسبی در تشخیص بافت سالم از بافت با دیسپلازی خفیف برخوردار است. نتایج این مدل‌سازی نشان می‌دهد که بین پیچیدگی ساختاری این سیستم زیستی و عدم قطعیت رفتار زمانی آن، می‌تواند ارتباط مستقیمی وجود داشته باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Esophageal Epithelium Modeling based on Globally Coupled Maps with the approach of Precancerous Lesions Diagnosis

نویسندگان [English]

  • Zahra Sadat Hosseini 1
  • Seyed Mohammad Reza Hashemi Golpayegani 2

1 Ph.D. Student, Bioelectric Department, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran

2 Professor, Bioelectric Department, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran

چکیده [English]

The esophageal carcinoma is the eight most predominate malignancy in the world and the sixth deadliest cancer. 80% of esophageal cancers occur in squamous cells. In Iran, this type of cancer is more prevalent in Golestan province. Before the onset of this type of cancer, histological precursor lesions emerge in the epithelial tissue of esophageal mucosa that their progression and penetration into the underlying layers of epithelium lead to cancer. This disease starts from a pre-clinical phase in most patients. In most cases, the disease progresses to the same clinical stage in the absence of appropriate therapeutic interventions. In the literature of this cancer, there is no model for the progression of these lesions (dysplasia) at the mesoscopic level. In this study, by using microscopic images of normal and low-grade dysplasia biopsy samples, we proposed a dynamical model based on the globally coupled logistic maps. The model was designed and its parameters were set based on the assumptions of the esophageal epithelium structure, functionality and using the information about the fractal geometry of this tissue. The model performance was evaluated by computation the pattern of Lyapunov exponent variations across the epithelium thickness. In this model, the decreasing trend of this index for normal tissue had a reasonable accuracy and sensitivity to diagnose it from the low-grade dysplasia. Besides, the model results show that it can be a direct relationship between the structural complexity of this biological system and its timeliness uncertainty.

کلیدواژه‌ها [English]

  • Squamous cell dysplasia
  • Behavioral modeling
  • Coupled maps lattice
  • Uncertainty
  • fractal dimension

[1]   J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D. M. Parkin, D. Forman, and F. Bray, “Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012,” Int. J. Cancer, vol. 136, no. 5, pp. E359–E386, Mar. 2015.

[2]   A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA. Cancer J. Clin., vol. 61, no. 2, pp. 69–90, Mar. 2011.

[3]   F. Islami, P. Boffetta, J.-S. Ren, L. Pedoeim, D. Khatib, and F. Kamangar, “High-temperature beverages and foods and esophageal cancer risk-A systematic review,” Int. J. Cancer, vol. 125, no. 3, pp. 491–524, Aug. 2009.

[4]   K. Aghcheli, H.-A. Marjani, D. Nasrollahzadeh, F. Islami, R. Shakeri, M. Sotoudeh, B. Abedi-Ardekani, M.-R. Ghavamnasiri, E. Razaei, E. Khalilipour, S. Mohtashami, Y. Makhdoomi, R. Rajabzadeh, S. Merat, R. Sotoudehmanesh, S. Semnani, and R. Malekzadeh, “Prognostic Factors for Esophageal Squamous Cell Carcinoma—A Population-Based Study in Golestan Province, Iran, a High Incidence Area,” PLoS One, vol. 6, no. 7, p. e22152, Jul. 2011.

[5]   G. Roshandel, S. Semnani, and R. Malekzadeh, “None-endoscopic Screening for Esophageal Squamous Cell Carcinoma- A Review.,” Middle East J. Dig. Dis., vol. 4, no. 2, pp. 111–24, Apr. 2012.

[6]   P. R. Taylor, C. C. Abnet, and S. M. Dawsey, “Squamous Dysplasia--The Precursor Lesion for Esophageal Squamous Cell Carcinoma,” Cancer Epidemiol. Biomarkers Prev., vol. 22, no. 4, pp. 540–552, Apr. 2013.

[7]   O. J. Maclaren, H. M. Byrne, A. G. Fletcher, and P. K. Maini, “Models, measurement and inference in epithelial tissue dynamics,” Math. Biosci. Eng., vol. 12, no. 6, pp. 1321–1340, 2015.

[8]   M. Shimizu, K. Nagata, H. Yamaguchi, and H. Kita, “Squamous intraepithelial neoplasia of the esophagus: past, present, and future,” J. Gastroenterol., vol. 44, no. 2, pp. 103–112, Feb. 2009.

[9]   R. J. Schlemper, “The Vienna classification of gastrointestinal epithelial neoplasia,” Gut, vol. 47, no. 2, pp. 251–255, Aug. 2000.

[10]G. Q. Wang, C. C. Abnet, Q. Shen, K. J. Lewin, X. D. Sun, M. J. Roth, Y. L. Qiao, S. D. Mark, Z. W. Dong, P. R. Taylor, and S. M. Dawsey, “Histological precursors of oesophageal squamous cell carcinoma: results from a 13 year prospective follow up study in a high risk population,” Gut, vol. 54, no. 2, pp. 187–192, 2005.

[11]P. S. Hiremath and Y. Humnabad Iranna, “Automated cell nuclei segmentation and classification of squamous cell carcinoma from microscopic images of esophagus tissue,” in Proceedings - 2006 14th International Conference on Advanced Computing and Communications, ADCOM 2006, 2006, pp. 211–216.

[12]P. S. Hiremath and Y. H. Iranna, “Fuzzy rule based classification of microscopic images of squamous cell carcinoma of esophagus,” Int J Comput Appl, vol. 25, pp. 30–33, 2011.

[13]Z. S. Hosseini, S. M. R. Hashemi Gholpayeghani, M. Sotoudeh, and R. Malekzadeh, “A fractal based approach to evaluate the progression of esophageal squamous cell dysplasia,” Biomed. Signal Process. Control, vol. 48, pp. 273–289, Feb. 2019.

[14]F. Graner and J. A. Glazier, “Simulation of biological cell sorting using a two-dimensional extended Potts model,” Phys. Rev. Lett., vol. 69, no. 13, pp. 2013–2016, Sep. 1992.

[15]R. A. Gatenby, K. Smallbone, P. K. Maini, F. Rose, J. Averill, R. B. Nagle, L. Worrall, and R. J. Gillies, “Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer,” Br. J. Cancer, vol. 97, no. 5, pp. 646–653, Aug. 2007.

[16]A. G. Fletcher, J. M. Osborne, P. K. Maini, and D. J. Gavaghan, “Implementing vertex dynamics models of cell populations in biology within a consistent computational framework,” Prog. Biophys. Mol. Biol., vol. 113, no. 2, pp. 299–326, Nov. 2013.

[17]A. BRANNSTROM and D. SUMPTER, “Coupled map lattice approximations for spatially explicit individual-based models of ecology,” Bull. Math. Biol., vol. 67, no. 4, pp. 663–682, Jul. 2005.

[18]K. Kaneko and I. Tsuda, Complex Systems: Chaos and Beyond. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001.

[19]S. Jalan, J. Jost, and F. M. Atay, “Symbolic synchronization and the detection of global properties of coupled dynamics from local information,” Chaos An Interdiscip. J. Nonlinear Sci., vol. 16, no. 3, p. 033124, 2006.

[20]W. Lu, B. Liu, and T. Chen, “Cluster synchronization in networks of coupled nonidentical dynamical systems,” Chaos An Interdiscip. J. Nonlinear Sci., vol. 20, no. 1, p. 013120, Mar. 2010.

[21]X. F. A. N. Wang, “SYNCHRONIZATION IN SMALL-WORLD DYNAMICAL NETWORKS,” vol. 12, no. 1, pp. 187–192, 2002.

[22]J. Jost and M. P. Joy, “Spectral Properties and Synchronization in Coupled Map Lattices,” 2001.

[23]A. M. Batista and R. L. Viana, “Lyapunov exponents of a lattice of chaotic maps with a power-law coupling,” Phys. Lett. Sect. A Gen. At. Solid State Phys., vol. 286, no. 2–3, pp. 134–140, 2001.

[24]A. M. Batista and R. L. Viana, “Kolmogorov–Sinai entropy for locally coupled piecewise linear maps,” Phys. A Stat. Mech. its Appl., vol. 308, no. 1–4, pp. 125–134, May 2002.

[25]K. Kaneko, “From globally coupled maps to complex-systems biology,” Chaos An Interdiscip. J. Nonlinear Sci., vol. 25, no. 9, p. 097608, Sep. 2015.

[26]P. Weber, “Switzerland: New medical informatics curriculum,” in Studies in Health Technology and Informatics, 2000, vol. 57, no. 4, pp. 46–50.

[27]J. Hizanidis, V. G. Kanas, A. Bezerianos, and T. Bountis, “Chimera States in Networks of Nonlocally Coupled Hindmarsh–Rose Neuron Models,” Int. J. Bifurc. Chaos, vol. 24, no. 03, p. 1450030, Mar. 2014.

[28]J. M. Casado, “Transient Activation in a Network of Coupled Map Neurons,” Phys. Rev. Lett., vol. 91, no. 20, p. 208102, Nov. 2003.

[29]Ç. Tuncay, “On the space and time evolution of regular or irregular human heart or brain signals,” EPL (Europhysics Lett., vol. 85, no. 1, p. 10002, Jan. 2009.

[30]R. Pashaie and N. H. Farhat, “Self-Organization in a Parametrically Coupled Logistic Map Network: A Model for Information Processing in the Visual Cortex,” IEEE Trans. Neural Networks, vol. 20, no. 4, pp. 597–608, Apr. 2009.

[31]M. Beigzadeh and S. M. R. H. Golpayegani, “A macroscopic chaotic model of visual perception,” in Biomedical Engineering and 2016 1st International Iranian Conference on Biomedical Engineering (ICBME), 2016 23rd Iranian Conference on, 2016, pp. 187–192.

[32]S. Mitra, P. G. Amazeen, and M. T. Turvey, “Intermediate motor learning as decreasing active (dynamical) degrees of freedom,” Hum. Mov. Sci., vol. 17, no. 1, pp. 17–65, 1998.

[33]B. A. Kay, “The dimensionality of movement trajectories and the degrees of freedom problem: A tutorial,” Hum. Mov. Sci., vol. 7, no. 2–4, pp. 343–364, 1988.

[34]A. N. Esgiar, R. N. G. Naguib, B. S. Sharif, M. K. Bennett, and A. Murray, “Fractal analysis in the detection of colonic cancer images.,” IEEE Trans. Inf. Technol. Biomed., vol. 6, no. 1, pp. 54–8, 2002.

[35]W. Klonowski, M. Pierzchalski, P. Stepien, R. Stepien, R. Sedivy, and H. Ahammer, “Application of Higuchi’s fractal dimension in analysis of images of Anal Intraepithelial Neoplasia,” Chaos, Solitons & Fractals, vol. 48, no. 3, pp. 54–60, Mar. 2013.

[36]H. D. Appelman, “What Is Dysplasia in the Gastrointestinal Tract?,” Arch. Pathol. Lab. Med., vol. 129, no. 2, pp. 170–173, Feb. 2005.

[37]Y. B. Gao, Z. L. Chen, J. G. Li, X. Da Hu, X. J. Shi, Z. M. Sun, F. Zhang, Z. R. Zhao, Z. T. Li, Z. Y. Liu, Y. Da Zhao, J. Sun, C. C. Zhou, R. Yao, S. Y. Wang, P. Wang, N. Sun, B. H. Zhang, J. S. Dong, Y. Yu, M. Luo, X. L. Feng, S. S. Shi, F. Zhou, F. W. Tan, B. Qiu, N. Li, K. Shao, L. J. Zhang, L. J. Zhang, Q. Xue, S. G. Gao, and J. He, “Genetic landscape of esophageal squamous cell carcinoma,” Nat. Genet., vol. 46, no. 10, pp. 1097–1102, 2014.

[38]A. Mashiah, O. Wolach, J. Sandbank, O. Uziel, P. Raanani, and M. Lahav, “Lymphoma and leukemia cells possess fractal dimensions that correlate with their biological features,” Acta Haematol., vol. 119, no. 3, pp. 142–150, 2008.

[39]R. C. Hilborn and J. C. Sprott, “Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers,” Am. J. Phys., vol. 62, no. 9, pp. 861–862, Sep. 1994.

[40]A. L. Mescher, Junqueira’s basic histology: text and atlas. Mcgraw-hill, 2013.

[41]ج. س. راد, بافت شناسی, پنجم. تهران: گلبان, 90AD.

[42]A. Tokes, Z. Schaff, A. M. Szasz, and J. Kulka, Tight Junctions in Cancer Metastasis, vol. 19. 2013.

[43]T. A. Martin and W. G. Jiang, “Loss of tight junction barrier function and its role in cancer metastasis,” Biochim. Biophys. Acta - Biomembr., vol. 1788, no. 4, pp. 872–891, 2009.

[44]T. J. Newman, “Modeling Multicellular Systems Using Subcellular Elements,” Math. Biosci. Eng., vol. 2, no. 3, pp. 613–624, 2005.

[45]R. C. Hilborn and J. C. Sprott, “Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers,” Am. J. Phys., vol. 62, no. 9, pp. 861–862, Sep. 1994.

[46]G. Lillacci and M. Khammash, “Parameter Estimation and Model Selection in Computational Biology,” PLoS Comput. Biol., vol. 6, no. 3, p. e1000696, Mar. 2010.

[47]H. G. Bock, T. Carraro, W. Jäger, S. Körkel, R. Rannacher, and J. P. Schlöder, Eds., Model Based Parameter Estimation, vol. 4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

[48]J. Sartakhti, M. Manshaei, and M. Archetti, “Game Theory of Tumor–Stroma Interactions in Multiple Myeloma: Effect of Nonlinear Benefits,” Games, vol. 9, no. 2, p. 32, May 2018.

[49]J. S. Sartakhti, M. H. Manshaei, S. Bateni, and M. Archetti, “Evolutionary Dynamics of Tumor-Stroma Interactions in Multiple Myeloma,” PLoS One, vol. 11, no. 12, p. e0168856, Dec. 2016.

[50]A. Etemadi, C. C. A. Mph, A. G. Mph, R. Malekzadeh, and S. M. Dawsey, “Modeling the Risk of Esophageal Squamous Cell Carcinoma and Squamous Dysplasia in a High Risk Area in Iran,” vol. 15, no. 1, pp. 2–5, 2012.

[51]M. Moghtadaei, M. R. Hashemi Golpayegani, and R. Malekzadeh, “A variable structure fuzzy neural network model of squamous dysplasia and esophageal squamous cell carcinoma based on a global chaotic optimization algorithm,” J. Theor. Biol., vol. 318, no. June 2015, pp. 164–172, 2013.

[52]M. Moghtadaei, M. R. Hashemi Golpayegani, F. Almasganj, A. Etemadi, M. R. Akbari, and R. Malekzadeh, “Predicting the risk of squamous dysplasia and esophageal squamous cell carcinoma using minimum classification error method,” Comput. Biol. Med., vol. 45, no. 1, pp. 51–57, 2014.