نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 کارشناسی ارشد، دانشکده‌ی مهندسی مکانیک، دانشگاه صنعتی شریف، تهران، ایران

2 استاد، دانشکده‌ی مهندسی مکانیک، دانشگاه صنعتی شریف، تهران، ایران

چکیده

تغییر در الگوهای فعالیت عضلانی یکی از عوامل و نیز پیامدهای کمردرد غیراختصاصی مزمن به شمار می­رود. در مطالعات اخیر استفاده از سینرجی عضلانی به عنوان راه‌کاری ارزنده برای تحلیل نحوه‌ی هم‌کاری عضلات در حرکات بدن معرفی شده است. در این مقاله، روش مطالعاتی جدیدی برای مدل‌سازی بالاتنه و استخراج سینرجی‌های عضلانی متغیر با زمان در حرکات صفحه‌ای خم شدن کمر ارائه شده است. از این رو، با در نظر گرفتن 18 عضله‌ی تاثیرگذار و تابع هزینه‌ی ترکیبی کمینه‌ی جرک- انرژی، 24 حرکت و الگوهای عضلانی متناظر آن‌ها شبیه‌سازی شده است. جهت بررسی نقش سرعت، الگوی فعالیت عضلانی به دو بخش تونیک، برای غلبه بر نیروی گرانش و بخش فازیک، متناسب با سرعت حرکت بالاتنه تقسیم‌بندی شده است. در ادامه برای هر جهت، سه زمان دست‌یابی به هدف برابر با 75/0، 1 و 2 ثانیه لحاظ گردیده است. نتایج نشان می­دهد که 77% از الگوی عضلانی حرکات کمر با استفاده از 4 سینرجی فازیک و 4 سینرجی تونیک حاصل می­گردد. سینرجی‌های به دست آمده کاملا تحت تاثیر جهت و سرعت حرکت می­باشند به گونه‌ای که هر جفت از سینرجی فازیک و تونیک در یکی از جهت‌های اصلی بیش‌ترین تاثیر را ایفا می‌کنند. از طرفی افزایش سرعت، باعث افزایش ضریب بزرگی و سریع‌تر فعال شدن سینرجی‌های فازیک نسبت به حالت معمول می­شود. در ادامه با در نظر گرفتن حرکت ترکیبی 45 درجه خمش به جلو همراه با 30 درجه خمش به چپ، 2/77% از الگوهای عضلانی حرکت  با استفاده از سینرجی‌های متغیر با زمان بازسازی شده است. می‌توان گفت که استفاده از سینرجی‌های عضلانی، توضیح مناسبی را برای چگونگی هم‌کاری عضلات در تولید حرکت در جهت‌ها و سرعت‌های مختلف ارائه می­دهد. 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation of Lumbar Muscle Synergy in Flexion Movement using Time-Varying Muscle Synergies

نویسندگان [English]

  • Mahdi Bagheri Rouchi 1
  • Mehrdad Davoudi 1
  • Mohammad Parnianpour 2

1 M.Sc., Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran

2 Professor, Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran

چکیده [English]

According to the literature, changes in muscle activity patterns are considered as one of the causes of non-specific chronic low back pain. Recent studies have introduced muscle synergy as a valuable tool for analyzing how muscles work in body movements. In this way, a new study method is proposed for modeling upper body and extracting time-varying muscle synergies in flexural motion of the waist. In this way, a new study method is proposed for modeling trunk and extracting time-varying muscle synergies in plane bending movements of lumbar flexion. Considering 18 effective muscles and function of the combined cost of the minimum jerk-energy, 24 different movements and their corresponding muscle patterns have been simulated. To evaluate the role of velocity, the pattern of muscle activity was divided into two parts: tonic, to overcome the gravity force, and phasic, proportional to the trunk movement velocity. In the following, three fast-reaching times of 0.75, 1, and 2 seconds were considered for each direction. The results showed that 77% of the lumbar muscle pattern of movement was achieved by four phasic synergies and four tonic synergies. The resulting synergies are quite influenced by the movement direction and velocity, so that each pair of phasic and tonic synergy is most effective in one of the main directions. On the other hand, the increase in velocity causes elevated amplitude coefficient and accelerated activation of phasic synergies compared to normal mode. Considering the 45° flexion combination with 30° left lateral bending, 77.2% of the muscle pattern of movement has been reconstructed using time-varying synergies. It can be argued that the use of muscle synergies expresses a good explanation for how muscles work in movement at different directions and velocities.

کلیدواژه‌ها [English]

  • Time-Varying Synergies
  • Phasic and Tonic Synergies
  • Spinal cord
  • optimal control

[1]   Parniapour, M., Nordin, M., Skovron, M.L. and Frankel, V.H.. Environmentally induced disorders of the musculoskeletal system. The Medical Clinics of North America, 74(2), pp.347-359. 1990.

[2]   O’Sullivan, P. Diagnosis and classification of chronic low back pain disorders: maladaptive movement and motor control impairments as underlying mechanism. Manual therapy, 10(4), pp.242-255, 2005.

[3]   Karayannis, N.V., Jull, G.A. and Hodges, P.W. Movement-based subgrouping in low back pain: synergy and divergence in approaches. Physiotherapy, 102(2), pp.159-169, 2016.

[4]   Nachemson, A. Back pain: delimiting the problem in the next millennium. International journal of law and psychiatry, 22(5-6), p.473, 1999.

[5]   Cheung, V.C., Turolla, A., Agostini, M., Silvoni, S., Bennis, C., Kasi, P., Paganoni, S., Bonato, P. and Bizzi, E. Muscle synergy patterns as physiological markers of motor cortical damage. Proceedings of the National Academy of Sciences, 109(36), pp.14652-14656, 2012

[6]   Panjabi, M.M.. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. Journal of spinal disorders, 5, pp.383-383, 1992.

[7]   Van Vliet, P.M. Heneghan, N.R. Motor control & the management of musculoskeletal dysfunc-tion. Manual therapy, 11(3), pp.208-213, 2006.

[8]   Desmurget, M. and Grafton, S., Forward modeling allows feedback control for fast reaching movements. Trends in cognitive sciences, 4(11), pp.423-431, 2000.

[9]   d'Avella, A., Fernandez, L., Portone, A. and Lacquaniti, F., Modulation of phasic and tonic muscle synergies with reaching direction and speed. Journal of neurophysiology, 100(3), pp.1433-1454, 2008.

[10]d'Avella, A., Portone, A., Fernandez, L. and Lacquaniti, F., Control of fast-reaching movements by muscle synergy combinations. Journal of Neuroscience, 26(30), pp.7791-7810, 2006.

[11]Tresch, M.C. and Jarc, A., The case for and against muscle synergies. Current opinion in neurobiology, 19(6), pp.601-607, 2009.

[12]Parnianpour, M., Computational models for trunk trajectory planning and load distribution: a test-bed for studying various clinical adaptation and motor control strategies of low back pain patients. In Spinal Control (pp. 17-29). Churchill Livingstone, 2013.

[13]Todorov, E. and Jordan, M.I., Optimal feedback control as a theory of motor coordination. Nature neuroscience, 5(11), p.1226, 2002.

[14]Latash, M.L., Motor synergies and the equilibrium-point hypothesis. Motor control, 14(3), pp.294-322, 2010.

[15]Ting, L.H. and McKay, J.L., Neuromechanics of muscle synergies for posture and movement. Current opinion in neurobiology, 17(6), pp.622-628, 2007.

[16]d'Avella, A. and Bizzi, E., Shared and specific muscle synergies in natural motor behaviors. Proceedings of the National Academy of Sciences, 102(8), pp.3076-3081, 2005.

[17]Alessandro, C., Delis, I., Nori, F., Panzeri, S. and Berret, B., Muscle synergies in neuroscience and robotics: from input-space to task-space perspectives. Frontiers in computational neuroscience, 7, p.43, 2013.

[18]Tresch, M.C. and Jarc, A., The case for and against muscle synergies. Current opinion in neurobiology, 19(6), pp.601-607, 2009.

[19]Sedaghat-Nejad, E., Mousavi, S.J., Hadizadeh, M., Narimani, R., Khalaf, K., Campbell-Kyureghyan, N. and Parnianpour, M.,. Is there a reliable and invariant set of muscle synergy during isometric biaxial trunk exertion in the sagittal and transverse planes by healthy subjects?. Journal of biomechanics, 48(12), pp.3234-3241, 2015.

[20]Kienbacher, T., Fehrmann, E., Habenicht, R., Koller, D., Oeffel, C., Kollmitzer, J., Mair, P. and Ebenbichler, G., Age and gender related neuromuscular pattern during trunk flexion-extension in chronic low back pain patients. Journal of neuroengineering and rehabilitation, 13(1), p.16, 2016.

[21]Moreside, J.M., Quirk, D.A. and Hubley-Kozey, C.L., Temporal Patterns of the Trunk Muscles Remain Altered in a Low Back–Injured Population Despite Subjective Reports of Recovery. Archives of physical medicine and rehabilitation, 95(4), pp.686-698, 2014.

[22]Chiou, S.Y., Jeevathol, A., Odedra, A. and Strutton, P.H., Voluntary activation of trunk extensors appears normal in young adults who have recovered from low back pain. European Journal of Pain, 19(10), pp.1506-1515, 2015.

[23]Journeay, W.S. and Kumbhare, D., Trunk Muscle Activation in the Low Back–Injured Population. Archives of physical medicine and rehabilitation, 95(5), p.1006, 2014.

[24]Zeinali-Davarani, S., Hemami, H., Barin, K., Shirazi-Adl, A. and Parnianpour, M., Dynamic stability of spine using stability-based optimization and muscle spindle reflex. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(1), pp.106-118, 2008.

[25]Pheasant, S., Bodyspace: anthropometry, ergonomics and the design of work: anthropometry, ergonomics and the design of work. CRC Press, 2014.

[26]Ahmed, I., An investigative study of the dynamics of human spine (Doctoral dissertation, Ohio State University) , 1993.

[27]Parnianpour, M., Ahmed, I., Hemami, H., Barin, K. and Crowell, R., Mathematical formulation of dynamic stability of 3-D spine during point to point movement: The role of co-activation. In Proc. 12th Triennial Congress Int. Ergonomics Assoc (pp. 179-181) , 1994.

[28]Hemami, H.,. Towards a compact and computer-adapted formulation of the dynamics and stability of multi rigid body systems. J. Autom. Control, 12(1), pp.64-70, 2002.

[29]Cholewicki, J. and McGill, S.M.,. Mechanical stability of the in vivo lumbar spine: implications for injury and chronic low back pain. Clinical biomechanics, 11(1), pp.1-15, 1996.

[30]Rashedi, E., Khalaf, K., Nassajian, M.R., Nasseroleslami, B. and Parnianpour, M., How does the central nervous system address the kinetic redundancy in the lumbar spine? Three-dimensional isometric exertions with 18 Hill-model-based muscle fascicles at the L4—L5 level. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 224(3), pp.487-501, 2010.

[31]Biess, A., Nagurka, M. and Flash, T., Simulating discrete and rhythmic multi-joint human arm movements by optimization of nonlinear performance indices. Biological cybernetics, 95(1), pp.31-53, 2006.

[32]Vakilzadeh, M.K., Sedighi, A., Salarieh, H., Asghari, M. and Parnianpour, M., A computation tool to simulate trunk motion and predict muscle activation by assigning different weights to physical and physiological criteria. Journal of Medical Imaging and Health Informatics, 1(3), pp.231-237, 2011.

[33]Russell, P., Pearcy, M.J. and Unsworth, A., Measurement of the range and coupled movements observed in the lumbar spine. Rheumatology, 32(6), pp.490-497, 1993.

[34]d'Avella, A., Saltiel, P. and Bizzi, E., Combinations of muscle synergies in the construction of a natural motor behavior. Nature neuroscience, 6(3), p.300, 2003.

[35]Vakilzadeh, M.K., Salarieh, H., Asghari, M. and Parnianpour, M., Trajectory Planning of Spine Motion During Flexion Using a Stability-Based Optimization. In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis (pp. 747-755). American Society of Mechanical Engineers, January, 2010.