مروری بر اطلس‌های مغزی نوزادان مبتنی بر تصاویر تشدید مغناطیسی

نوع مقاله: مقاله پژوهشی مروری

نویسندگان

1 استاد، گروه مهندسی پزشکی، دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی خواجه نصیر الدین طوسی

2 دانشجوی دکترای مهندسی پزشکی،دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی خواجه نصیر الدین طوسی

3 استادیار، گروه مهندسی برق (مخابرات)، دانشکده مهندسی برق و الکترونیک، دانشگاه صنعتی شیراز

4 استاد،گروه بیوفیزیک، دانشکده پزشکی، دانشگاه پیکاردی

5 دانشیار، گروه نوروفیزیولوژی، دانشکده پزشکی، دانشگاه پیکاردی

10.22041/ijbme.2011.13202

چکیده

مطالعه فرآیند رشد مغز در دوران نوزادی و کودکی از اهمیت زیادی برخوردار است. زیرا هرگونه اختلال در این فرآیند می‌تواند سبب بروز بیماری در فرد شود، بویژه اگر نوزاد به صورت نارس بدنیا آمده باشد. پیشرفت‌های اخیر در زمینة تصویربرداری تشدید مغناطیسی امکان اخذ تصاویری را با کیفیت و رزولوشن بالا از بافت‌های مغزی نوزادان فراهم ساخته است. با ناحیه‌بندی و استخراج بافت‌ها می‌توان به مدلسازی تغییرات در بافت‌ مغزی پرداخت و بر مراحل رشد مغزی نوزادان و کودکان نظارت کرد. از طرف دیگر داشتن یک مدل نزدیک به واقعیت از سر شامل پوست، جمجمه و مغز می‌تواند در حل دقیقتر مسأله معکوس مکانیابی منبع سیگنال‌های مغزی ثبت‌شده کمک کند و همچنین چگونگی انتشار امواج الکترومغناطیس را در سر نوزادان نشان دهد. در این مقالة مروری، در ابتدا اطلس‌های مغز به سه دستۀ اطلس‌های مبتنی بر یک فرد، اطلس‌های احتمالی و اطلس‌های آماری طبقه‌بندی می‌شوند. در ادامه اطلس‌های مغزی نوزادان در دسته‌بندی‌های مطرح شده، بیان و روش ایجاد و کاربرد هر کدام مطالعه می‌شود. در پایان ضمن بررسی نقاط ضعف و قوت اطلس‌های مغزی ساخته شده برای نوزادان تاکنون به تبیین فعالیت‌های جاری و روند تحقیقات آتی در این زمینه می‌پردازیم.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A survey of Neonatal Brain Atlases based on MR Images

نویسندگان [English]

  • Hamid Abrishami Moghaddam 1
  • Maryam Momeni 2
  • Kamran Kazemi 3
  • Reinhard Grebe 4
  • Fabrice Wallois 5
1 Professor, Biomedical Engineering Group, Electrical and Computer Engineering Department, K.N. Toosi University of Technology
2 Ph.D Student, Biomedical Engineering Group, Electrical and Computer Engineering Department, K.N. Toosi University of Technology
3 Assistant Professor, Communication Engineering Group, Electrical Engineering Department, Shiraz University of Technology
4 Professor, Biophysics Group, Medical Department, Picardie University
5 Associate Professor, Neurophysiology Group, Medical Department, Picardie University
چکیده [English]

Diagnostic follow-up of the brain development during the neonatal period and childhood is an important clinical task. Any disturbance of this process can cause pathological deviations, especially if the baby is born premature. Recent advances in magnetic resonance imaging allow obtaining high-resolution images of the neonatal brain. After segmenting the brains they can be used to reconstruct and model changes occurring during neonatal brain development. In addition such near-realistic model of the head, including the skin, skull and brain can be used to solve the inverse problem of determining the sources of registered signals from electrical brain activity. Although there exist numerous methods and various modeling schemes for adults, these cannot be used directly for neonates due to important differences in morphology. In this review article, neonatal brain atlases are divided into three categories: individual atlases, probabilistic atlases and stochastic atlases. In the following, existing neonatal brain atlases are placed in this classification and their methods of construction are presented. Furthermore, strengths and weaknesses of those neonatal brain atlases are analyzed and finally future research trends in this area are explained.

کلیدواژه‌ها [English]

  • Neonatal brain atlases
  • individual atlases
  • probabilistic atlases
  • stochastic atlases
  • Magnetic Resonance Images

[1]         Toga A.W., Thompson P., Multimodal brain atlases, Book chapter on biomedical image database; 1999, The Kluwer Academic Press.

[2]         Mazziotta J.C., Toga A.W., Evans A., Fox P.,  Lancaster J., A probabilistic atlas of the human brain: theory and rationale for its development; The International Consortium for Brain Mapping (ICBM), Neuroimage, 1995; 2: 89-101.

[3]         Joshi S., Davis B., Jomier M., Gerig G., Unbiased diffeomorphic atlas construction for computational anatomy; Neuroimage, 2004; 23 (1): 151-160.

[4]         Brodmann K. , Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues, 1909, Barth, Leipzig, In: Some Papers on the Cerebral Cortex, translated as: On the Comparative Localization of the Cortex, 201-230, Thomas, Springfield, IL, 1960.

[5]         Toga A.W., Mazziotta J.C., Brain Mapping: The Methods; 1996, Academic Press.

[6]         Thompson P.M., Mega M.S., Toga A.W., Disease-Specific Brain Atlases, Book Chapter in: Brain Mapping: The Disorders; 2000, Academic Press.

[7]          Guimond A., Meunier J., Thirion J.P., Average brain models: a convergence study; Computer Vision and Image Understanding, 2000; 77(2): 192–210.

[8]          Evans A.C., Collins D.L, Mills S.R., Brown E.D., Kelly R.L., Peters T.M., 3D statistical neuroanatomical models from 305 MRI volumes; IEEE Nuclear Science Symposium, Medical Imaging Conference, 1995; pp: 1813–1817.

[9]          Bluml S., Friedlich P., Erberich S., Wood J.C., Seri I., Nelson M.D., MR imaging of newborns by using an MR-compatible incubator with integrated radiofrequency coils: initial experience; Radiology, 2004; 231: 594-601.

[10]     Jones R.A., Palasis S., Grattan-Smith J.D., MRI of the neonatal brain: optimization of spin-echo parameters; AJR Am J Roentgenol. , 2004, 182: 367-372.

[11]     Muzik O., Chugani D.C.,  Juhasz C., Shen C., Chugani H.T., Statisticalparametric mapping: assessment of application in children; Neuroimage, 2000; 12: 538-549.

[12]     Burgund E.D., Kang H.C., Kelly J.E., Buckner R.L., Snyder A.Z., Petersen S.E., Schlaggar B.L., The feasibilityof a common stereotactic space for children and adults in fMRI studies of development; Neuroimage, 2002: 1:184-200.

[13]     Wilke M., Schmithorst V.J., Holland S.K., Assessment of spatial normalization of whole-brain magnetic resonance images in children; Human Brain Mapping, 2002; 17: 48-60.

[14]     Wilke M., Schmithorst V.J., Holland S.K., Normative pediatric brain data for spatial normalization and segmentation differs from standard adult data; Magn Reson Med, 2003; 50:749-757.

[15]     Gaillard W.D., Grandin C.B., Xu B., Developmental aspects of pediatric fMRI: considerations for image acquisition, analysis, and interpretation; Neuroimage, 2001; 13: 239-249.

[16]     Ketonen L.M., Hiwatashi A., Sidhu R.,  Westesson P.L., Pediatric brain and spine: an atlas of MRI and spectroscopy; 2005; Springer-Verlag, Berlin Heidelberg.

[17]     Dehaene-Lambertz G., Dehaene S., Hertz-Pannier L., Functional neuroimaging of speech perception in infants; Science, 2002; 298: 2013-2015.

[18]     Prastawa M., Gilmore J.H., Lin W., Gerig G., Automatic segmentation of MR images of the developing newborn brain; Medical Image Anal, 2005; 9: 457-466.

[19]     Kazemi K., Abrishami Moghaddam H.,  Grebe R., Gondry-Jouet C., Wallois F., A neonatal atlas template for spatial normalization of whole-brain Magnetic Resonance Images of newborns: preliminary results; Neuroimage, 2007; 37: 463-473.

[20]      Kazemi K., Ghadimi S., Abrishami Moghaddam H., Grebe R., Gondry-Jouet C., Wallois F., Neonatal probabilistic models for brain, CSF and skull using T1-MRI data: Preliminary results; 30th Annual International Conference of theIEEE EMBS, 2008; PP: 3892-3895, Vancouver, BC.

[21]     کاظمی کامران، نوری زاده نگار، شاهوران زهرا، ابریشمی مقدم حمید، گرب راینهارد، والوا فابریس، طراحی و ساخت اطلس آماری دیجیتال مغزی نوزادان، هجدهمین کنفرانس مهندسی برق ایران، اردیبهشت 89، اصفهان، ایران.

[22]      Shi F., Yap P., Fan Y., Gilmore J.H., Lin W., Dinggang Shen, Construction of multi-region-multi-reference atlases for neonatal brain MRI segmentation; NeuroImage, 2010; 51: 684–693.

[23]     Shi F., Yap P., Wu G., Jia H., Gilmore J., Lin W., Shen D., Infant brain atlases from neonates to 1- and 2-year-olds. PLoS One 6 (4), e18746, 2011.

[24]     Murgasova M., Aljabar P., Srinivasan L., Edwards D., Hajnal J., Rueckert D., Construction of a dynamic 4D probabilistic atlas for the developing brain, MIUA, 2009.

[25]     Murgasova M.K., Aljabar P., Srinivasan L.,  Counsell S.J., Doria V., Serag A., Gousias I.S.,  Boardman J.P., Rutherford M.A., Edwards A.D., Hajnal J.V., Rueckert D., A dynamic 4D probabilistic atlas of the developing brain; NeuroImage, 2011; 54(4): 2750-2763.

[26]     Oishi K., Mori S., Donohue P.K., Ernst Th., Anderson L., Buchthal S., Faria A., Jiang H., Li X., Miller M.I., van Zijl P.C.M., Chang L., Multi-contrast human neonatal brain atlas: Application to normal neonate development analysis; NeuroImage , 2011; 56: 8–20

[27]     Serag A., Aljabar P., Counsell S., Boardman J.,  Hajnal J.V., Rueckert D., Construction Of A 4d Atlas Of The Developing Brain Using Non-Rigid Registration, Biomedical Imaging: From Nano to Macro; IEEE International Symposium, 2011; pp: 1532 – 1535.

[28]     Serag A., Aljabar P., Ball G., Counsell S.J.,  Boardman J.P., Rutherford M.A., Edwards A.D., Hajnal J.V., Rueckert D., Construction of a Consistent High-Definition Spatio-Temporal Atlas of the Developing Brain using Adaptive Kernel Regression; NeuroImage, Available online October 2011.

[29]     Thompson P.M., Toga A.W., Detection, visualization and animation of abnormal anatomic structure with a deformable probabilistic brain atlas based on random vector field transformation; Medical Image Annual, 1995; 1(4): 271–294.

[30]     Avants B., Gee J.C., Geodesic estimation for large deformation anatomical shape averaging and interpolation; Neuroimage, 2004; 23(1): 139-150.

[31]     Hill D., Hajnal J., Rueckert D., Smith S., Hartkens T., McLeish K., A dynamic brain atlas. In: Dohi, D., Kikinis, R. (Eds.); Medical Image Computing and Computer-Assisted Intervention 2002; LNCS 2488, pp: 532–539.

[32]     Talairach J., Tournoux P., Co-planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System - an Approach to Cerebral Imaging; 1988, Thieme Medical Publishers, New York.

[33]     http://www.bic.mni.mcgill.ca/brainweb

[34]     Cootes T.F., Taylor C.J., Cooper D.H., Graham J., Active Shape Models: Their Training and Application; Computer Vision and Image Understanding, 1995; 61(1): 38-59.

[35]     Cootes T.F., Edwards C.J., Taylor C.J., Active Appearance Model; European Conference on Computer Vision, 1998; 2: 484-498.

[36]     Rueckert D., Frangi A.F., Schnabel J.A., Automatic Construction of 3D Statistical Deformation Models of the Brain Using Nonrigid Registration; In Fourth Int. Conf. on Medical Image Computing and Computer Assisted Intervention, LNCS, 2001; 2208: 74-84, Springer.

[37]     امامی میبدی محمدعلی،  تشریح موضعی و مصور مغز و نخاع، چاپ دوم، انتشارات اشارت، 1387.

[38]     Brett M., Johnsrude I.S., Owen A.M., The problem of functional localization in the human brain; 2002, Macmillan magazines.

[39]     Woods R.P., Grafton S.T., Watson J.D.G., Sicotte N.L., Mazziotta J.C., Automated image registration: II. Intersubject validation of linear and nonlinear models; J. Computer Assisted Tomography, 1998; 22(1): 153-65.

[40]     Duta N., Sonka M., Segmentation and Interpretation ofMR Brain Images: An Improved Active Shape Model; IEEE Transactions on Medical Imaging, 1998; 17(6).

[41]     Kazemi K., Grebe R., Abrishami Moghaddam H.,  Lagadec P., Gondry-Jouet C., Wallois F., Design of a Digital Phantom of the Neonatal Brain; 29th Annual International Conference of the IEEE EMBS, Aug. 2007; pp: 5509 - 5512.

[42]     Kazemi K., Abrishami Moghadam H., Grebe R.,  Gondry-Jouet C., Wallois F., Design and construction of a brain phantom to simulate neonatal MR images; Computerized Medical Imaging and Graphics, 2011; 35: 237–250.

[43]     Kazemi K., Grebe R., Abrishami Moghadam H., Wallois F., Gondry-Jouet C., Steps towards a newborns MRI head atlas and model; Journal of Clinical Neurophysiology, Sep. 2008; 119(9): 120.

[44]     Ashburner J., Friston K.J., Unified segmentation; Neuroimage, 2005; 26: 839-851.

[45]     Zhao M., Yan H., Adaptive thresholding method for binarization blueprint images. Fifth International Symposium on Signal Processing and its Applications; ISSPA ‘99, Brisbane, Australia, 1999; pp: 931-934.

[46]     Aarabi A., Kazemi K., Grebe R., Abrishami Moghaddam H., Wallois F., Detection of EEG transients in neonates and older children using a system based on dynamic time-warping template matching and spatial dipole clustering; NeuroImage, 2009; 48: 50-62.

[47]     Seghers D., Dagostino E., Maes F., Vandermeulen D., Suetens P., Construction of a brain template frommr images using state-of-the-art registration and segmentationtechniques; MICCAI 2004, LNCS 3216, pp: 696-703.

[48]     Weisenfeld I., Mewes U.J.A., Warfield K.S., Highly Accurate Segmentation of Brain Tissue and Subcortical Gray Matter from Newborn MRI; MICCAI 2006, LNCS 4190, pp: 199–206.

[49]     Warfield S.K., Kaus M., Jolesz F.A., Kikinis R., Adaptive, template moderated, spatially varying statistical classification; Medical Image Analysis, 2000; 4(1): 43-45.

[50]     Altaye M., Holland S.K., Wilke M., Gaser Ch., Infant brain probability templates for MRI segmentation and normalization; NeuroImage, 2008; 43: 721–730.

[51]     Shi F., Fan Y., Tang S., Gilmore J.H., Lin W., Shen D., Neonatal brain imagesegmentation in longitudinal MRI studies; NeuroImage, 2010; 49: 391–400.

[52]     Frey B.J., Dueck D., Clustering by passing messages between data points; Science, 2007; 315: 972–976.

[53]     Xue H., Srinivasan L., Jianga  S. et al., Automatic segmentation and reconstruction of the cortex from neonatal MRI; NeuroImage, 2007; 38(3): 461–477.

[54]     Murgasova M., Hajnal J., Counsell S. et al., Template-based bias correction: Application to pediatric brain MRI; Proceedings 17th Scientific Meeting, International Society for Magnetic Resonance in Medicine, 2009; p :4672.

[55]     Knickmeyer R.C., Gouttard S., Kang C., Evans D., Wilber K., A structural MRI study of human brain development from birth to 2 years; Journal of Neuroscience, 2008; 28: 12176–12182.

[56]     Pham D.L., Prince J.L., An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities; Pattern Recognition Letters, 1999; 20: 57–68.

[57]     Wu G., Wang Q., Jia H., Shen D., Feature-based Groupwise Registration by Hierarchical Anatomical Correspondence Detection; Human Brain Mapping: In press, 2011.

[58]     Ashburner J., Hutton Ch., Frackowiak R., Johnsrude I., Price C., Friston K., Identifying Global Anatomical Differences: Deformation-Based Morphometry; Human Brain Mapping, 1998; 6: 348–357.

[59]     Dubois J., Hertz-Pannier L., Cachia A., Mangin J.F., Le Bihan D., Dehaene-Lambertz G., Structural asymmetries in the infant language and sensori-motor networks; Cereb Cortex, 2009; 19(2): 414-423.

[60]     Leroy F., Glasel H., Dubois J., Hertz-Pannier L., Thirion B., Mangin J,F., Dehaene-Lambertz G., Early Maturation of the Linguistic Dorsal Pathway in Human Infants; Journal of Neuroscience,  2011; 31(4): 1500-1506.