نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی پزشکی بیوالکتریک، دانشگاه علم و صنعت ایران، دانشکده مهندسی برق

2 دانشیار مهندسی پزشکی بیوالکتریک، دانشگاه علم و صنعت ایران، دانشکده مهندسی برق

10.22041/ijbme.2011.13162

چکیده

در طی دو دهه اخیر، تحریک الکتریکی درون عضلانی به عنوان یک روش بالقوه به منظور بازیابی حرکت عضو فلج مطرح شده است. اصلی ترین چالش در بازیابی حرکت مطلوب در استفاده از تحریک الکتریکی درون عضلانی توسعه یک استراتژی کنترلی مقاوم برای تعیین الگوی‌های تحریک می‌باشد. کنترل دقیق و پایدار عضو در روش تحریک الکتریکی عملکردی درون عضلانی بدلیل خواص غیر خطی و متغیر با زمان سیستم عصبی- عضلانی و همچنین خستگی عضلانی زودرس و وجود تأخیر در این سیستم، مشکل می‌باشد. در این مطالعه تحقیقاتی یک استراتژی مقاوم برای کنترل حرکت چند مفصله با استفاده از تحریک الکتریکی درون عضلانی مطرح شده است. در این روش پارامتر‌های سیستم به صورت بر خط شناسایی می‌شود. روش ارائه شده ترکیبی از روش کنترل لغزشی با سیستم منطق فازی و کنترل کننده عصبی می‌باشد. به منظور ارزیابی  مقاوم بودن، پایداری و دقت کنترل کننده، آزمایشات زیادی بر روی سه رت انجام شده است. نتایج آزمایشات نشان می‌دهد که روش پیشنهادی قابلیت کنترل دقیق حرکت گام برداشتن  با همگرایی سریع را دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Adaptive Neuro-Fuzzy Sliding Mode control of Walking Using Intramuscular Electrical Stimulation in Rat Model

نویسندگان [English]

  • Abed Khorasani 1
  • Abbas Erfanian Omidvar 2

1 M.Sc Graduated, Iran Neural Technology Centre, Iran University of Science and Technology

2 Associate Professor, Iran Neural Technology Centre, Iran University of Science and Technology

چکیده [English]

During the last decade, functional neuromuscular stimulation (FNS) has been proposed as a potential technique for restoring motor function in paralyzed limbs. A major challenge to restoring a desired functional limb movement through the use of intramuscular stimulation is the development of a robust control strategy for determining the stimulation patterns. A major impediment to stimulating the paralyzed limbs and determining the stimulation pattern has been the highly non-linear, time-varying properties of electrically stimulated muscle, muscle fatigue, large latency and time constant which limit the utility of pre-specified stimulation pattern and open-loop FES control system. In this paper we present a robust strategy for multi-joint control through intramuscular stimulation in which the system parameters are adapted online and the controller requires no offline training phase. The method is based on the combination of sliding mode control with fuzzy logic and neural control. Extensive experiments on three rats are provided to demonstrate the robustness, stability, and tracking accuracy of the proposed method. The results show that the proposed strategy can provide accurate tracking control with fast convergence.

کلیدواژه‌ها [English]

  • Functional electrical stimulation
  • intramuscular stimulation
  • Fuzzy logic
  • sliding mode control
[1]     D. Graupe, R. Davis, H. Kordylewski, and K. Kohn, “Ambulation by traumatic T4-T12 paraplegics using  functional neuromuscular stimulation,” Crit. Rev. Neurosurg., vol. 8, no. 4, pp. 221–231, Jul. 1998.
[2]     J G. M. Yarkony, E. J. Roth, G. Cybulski, and R. J. Jaeger, “Neuromuscular stimulation in spinal cord injury: I: Restoration of motor functional movements of the extremities,” Arch Phys. Med. Rehabil., vol. 73, pp. 78–86, 1992.
[3]     Agarwal S, Triolo R J, Kobetic R, Miller M, Bieri C, Kukke S, Rohde L and Davis J A. 2003, “Long-term user perceptions of an implanted neuroprosthesis for exercise, standing, and transfers after spinal cord injury,” J. Rehabil. Res. Dev. 40 241–52.
[4]     MembergWD, Crago P E and Keith MW2003 , “Restoration of elbow extension via functional electrical stimulation in individuals with tetraplegia,” J. Rehabil. Res. Dev. 40, 477–86.
[5]     M. Hook and J. GrauAn, “animal model of functional electrical stimulation: evidence that the central nervous system modulates the consequences of training,” Behavioral Neuroscience. vol. 122, pp. 233-249, 2008.
[6]     R. Jung, A. Blanger, T. Kanchku, M. Fairchald and J. Abbas, “Neuromuscular stimulation therapy after incomplete spinal cord injury promotes recovery of interlimb coordination during locomotion,” Journal of Neural Eng., vol. 6 , 2009.
[7]     G. Cybulski, and R. J. Jaeger, “Functional electrical stimulation for neuromuscular applications,” Rev. Biomed. Eng., vol. 9, no. 2, pp. 245–257, Sep. 2005.
[8]     U. Bogataj, N. Gros , M. Malezic, B. Kelij,M. Klajic, R. Acimovic, “Restoration of gait during two of three weeks of therapy with multichannel electrical stimulation,” Journal of the American Physical Thraphy, Ther Vol 69, 1989.
[9]     M. R. Popovic, T.Keller, I. P. I. Pappas,V. Dietz, andM.Morari, “Surface stimulation technology for grasping and walking neuroprostheses,” IEEE Eng. Med. Biol. Mag., vol. 20, no. 1, pp. 82–93, Jan. 2001.
[10] J. Daly, K. Kollar, A. Debogorski, B. Strasshofer, E. Marsolais, A. Scheiner, S. Snyder, L. Ruff, “Performance of an intramuscular electrode during functional neuromuscular stimulation for gait training post stroke,” J Rehabil Res Dev., pp. 513-26, 2001.
[11] K. Ichihara, G. Venkatasubramanian and J. Abbas, “Chronic neuromuscular electrical stimulation of paralyzed hindlimbs in a rodent model,” J. Neurosci Methods, pp. 241-254, 2009.
[12] J. J. Abbas and H. J. Chizeck, “Neural network control of functional neuromuscular stimulation systems: computer simulation studies,” IEEE Trans. Biomed. Eng., vol. 42, no. 11, pp. 1117–1127, 1995.
[13] J. Reiss and J. J. Abbas, “Adaptive control of cyclic movements as muscles fatigue using functional neuromuscular stimulation,” IEEE Trans. Neural. Syst. Rehabil. Eng., vol. 9, no. 3, pp. 326-330, 2001.
[14] S. Došen and D. B. Popović, “Moving-window dynamic optimization: design of stimulation profiles for walking,” IEEE Trans. Biomed. Eng., vol. 56, no. 5, pp. 1298-1309, 2009.
[15] Seung-Jae Kim, Mallika D. Fairchild, A. Iarkov James J. Abbas, and Ranu Jung, “Adaptive control of movement for neuromuscular stimulation-assisted therapy in a rodent model,” IEEE Trans. Biomed. Eng., vol. 9, no. 2, pp. 245–257, Sep. 2009.
[16] J.-J. E. Slotine and W. Li, Applied Nonlinear Control. NJ: Prentice Hall, 1991.
[17] Ajoudani and A. Erfanian, “A neuro-sliding mode control with adaptive modeling of uncertainty for control of movement in paralyzed limbs using functional electrical stimulation,” IEEE. Biomed. Eng., vol. 56, pp. 1771–1780, 2009.
[18] H. R. Kobravi and A. Erfanian, “Decentralized adaptive robust control based on sliding mode and nonlinear compensator for the control of ankle movement using functional electrical stimulation of agonist–antagonist muscles,” J. Neural Eng., vol.6, pp. 1-10, 2009.
[19] W. D. Chang, R. C. Hwang, and J. G. Hsieh, “Application of an auto-tuning neuron to sliding mode control,” IEEE Trans. On systems, man and cybernetics - Part C: applications and reviews, vol. 32, pp. 517-522, Nov 2002.
[20] L.X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis. NJ: Prentice Hall, 1994.
[21] B. Zhou, S. R. Katz, R. V. Baratta, M. Solomonow and R. D. D’Ambrosia, “Evaluation of antagonist coactivation strategies elicited from electrically stimulated muscles under load-moving conditions,” IEEE Transactions on Biomedical Engineering, vol. 44, no. 7, pp. 620-633, 1997.
[22] K. Thota, S. CarlsonWatson, E. J. Knapp, B. T. Thompson, and R. Jung, “Neuromechanical control of locomotion in the rat,” J. Neurotrauma, vol. 22, no. 4, pp. 442–465, Apr. 2005.