نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 ﺩﺍﻧﺸﺠﻮی ﻛﺎﺭﺷﻨﺎﺳﻰﺍﺭﺷﺪ، ﮔﺮﻭﻩ ﺍﻟﻜﺘﺮﻭﻧﻴﮏ، ﺩﺍﻧﺸﻜﺪﻩ ﻣﻬﻨﺪﺳﻰ ﺑﺮﻕﻭﻛﺎﻣﭙﻴﻮﺗﺮ، ﭘﺮﺩﻳﺲ ﺩﺍﻧﺸﻜﺪﻩﻫﺎی ﻓﻨﻰ، ﺩﺍﻧﺸﮕﺎﻩ ﺗﻬﺮﺍﻥ

2 ﺍﺳﺘﺎﺩﻳﺎﺭ، ﮔﺮﻭﻩ ﺍﻟﻜﺘﺮﻭﻧﻴﮏ، ﺩﺍﻧﺸﻜﺪﻩ ﻣﻬﻨﺪﺳﻰ ﺑﺮﻕ ﻭ ﻛﺎﻣﭙﻴﻮﺗﺮ، ﭘﺮﺩﻳﺲ ﺩﺍﻧﺸﻜﺪﻩﻫﺎی ﻓﻨﻰ، ﺩﺍﻧﺸﮕﺎﻩ ﺗﻬﺮﺍﻥ

3 ﺩﺍﻧﺸﺠﻮی ﺩﻛﺘﺮی، ﮔﺮﻭﻩ ﺑﻴﻮﺍﻟﻜﺘﺮﻳﮏ، ﺩﺍﻧﺸﻜﺪﻩ ﻣﻬﻨﺪﺳﻰ ﺑﺮﻕ ﻭ ﻛﺎﻣﭙﻴﻮﺗﺮ، ﭘﺮﺩﻳﺲ ﺩﺍﻧﺸﻜﺪﻩﻫﺎی ﻓﻨﻰ، ﺩﺍﻧﺸﮕﺎﻩ ﺗﻬﺮﺍﻥ - ﻣﺮﺑﻰ، ﺩﺍﻧﺸﻜﺪﻩ ﻣﻬﻨﺪﺳﻰ ﺑﺮﻕ، ﺩﺍﻧﺸﮕﺎﻩ ﺻﻨﻌﺘﻰ ﺍﺭﻭﻣﻴﻪ

10.22041/ijbme.2014.13554

چکیده

ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﻓﺮﺳﺘﻨﺪﻩﺍی ﺑﺎ ﻣﻌﻤﺎﺭی ﺟﺪﻳﺪ ﺑﺮﺍی ﺣﺴﮕﺮﻫﺎی ﻗﺎﺑﻞ ﻛﺎﺷﺖ ﻳﺎ ﭘﻮﺷﻴﺪﻧﻰ ﭘﻴﺸﻨﻬﺎﺩ ﺷﺪﻩ ﺍﺳﺖ. ﺑﺴﻴﺎﺭی ﺍﺯ ﮔﺮﻩﻫﺎی ﺣﺴﮕﺮی ﺑﻪ ﺟﺎی ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺑﺎﻃﺮی، ﺗﻮﺍﻥ ﻣﺼﺮﻓﻰ ﺧﻮﺩ ﺭﺍ ﺍﺯ ﻃﺮﻳﻖ ﺳﻴﺴﺘﻢ ﺍﺳﺘﺤﺼﺎﻝ ﺍﻧﺮﮋی ﺗﺄﻣﻴﻦ ﻣﻰﻛﻨﻨﺪ. ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺍﻳﻨﻜﻪ ﺗﻮﺍﻥ ﺗﺄﻣﻴﻦ ﺷﺪﻩ ﺍﺯ ﻃﺮﻳﻖ ﺍﺳﺘﺤﺼﺎﻝ ﺍﻧﺮﮋی ﻣﺤﺪﻭﺩ ﺍﺳﺖ، ﻃﺮﺍﺣﻰ ﮔﺮﻩ ﺣﺴﮕﺮی ﺑﺎ ﺗﻮﺍﻥ ﻣﺼﺮﻓﻰ ﻛﻢ ﻣﻄﻠﻮﺏ ﺍﺳﺖ. ﮔﺮﻩ ﺣﺴﮕﺮی ﺍﺯ ﺑﻠﻮکﻫﺎی ﻣﺨﺘﻠﻔﻰ ﺗﺸﻜﻴﻞ ﺷﺪﻩ ﺍﺳﺖ، ﻛﻪ ﻗﺴﻤﺖ ﺭﺍﺩﻳﻮﻳﻰ ﺁﻥ ﺗﻮﺍﻥ ﻏﺎﻟﺐ ﻛﻞ ﺳﻴﺴﺘﻢ ﺭﺍ ﻣﺼﺮﻑ ﻣﻰﻛﻨﺪ؛ ﺑﻨﺎﺑﺮﺍﻳﻦ ﻣﻌﻤﺎﺭی ﺟﺪﻳﺪ ﻓﺮﺳﺘﻨﺪﻩ ﺑﺎ ﻣﺪﻭﻻﺳﻴﻮﻥ BFSK ﻭ ﺗﻮﺍﻥ ﻣﺼﺮﻓﻰ ﻛﻢ ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﺍﺳﺖ. ﺑﻪ ﻣﻨﻈﻮﺭ ﻛﺎﻫﺶ ﺗﻮﺍﻥ ﻣﺼﺮﻓﻰ ﻓﺮﺳﺘﻨﺪﻩ ﺍﺯ ﺭﻭﺵﻫﺎی ﻗﻔﻞ ﺗﺰﺭﻳﻖ ﻭ ﺿﺮﺏ ﻓﺮﻛﺎﻧﺴﻰ ﺍﺳﺘﻔﺎﺩﻩ ﺷﺪﻩ ﺍﺳﺖ. ﺩﺭ ﺍﻳﻦ ﻓﺮﺳﺘﻨﺪﻩ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻣﺪﻭﻻﺳﻴﻮﻥ BFSK، ﺍﺭﺗﺒﺎﻃﻰ ﻣﺘﻘﺎﺭﻥ ﺑﻴﻦ ﮔﺮﻩ ﺣﺴﮕﺮی ﻭ ﺍﻳﺴﺘﮕﺎﻩ ﭘﺎﻳﻪ ﺍﻳﺠﺎﺩ ﻣﻰﺷﻮﺩ و ﭘﻴﭽﻴﺪﮔﻰ ﺍﺭﺗﺒﺎﻁ ﺑﻪ ﺍﻳﺴﺘﮕﺎﻩ ﭘﺎﻳﻪ ﻳﺎ ﻫﻤﺎﻥ ﮔﻴﺮﻧﺪﻩ ﻣﻨﺘﻘﻞ ﻧﺨﻮﺍﻫﺪ ﺷﺪ. ﺩﺭ ﻣﻌﻤﺎﺭی ﭘﻴﺸﻨﻬﺎﺩی ﺑﺮﺧﻼﻑ ﻣﻌﻤﺎﺭیﻫﺎی ﺭﺍﻳﺞ، ﺍﺯ ﻧﻮﺳﺎﻥﺳﺎﺯﻫﺎﻳﻰ ﺑﺎ ﺗﻮﺍﻥ ﻣﺼﺮﻓﻰ ﺯﻳﺎﺩ ﻣﺎﻧﻨﺪ PLL ﺍﺳﺘﻔﺎﺩﻩ ﻧﺸﺪﻩ ﺍﺳﺖ. ﻫﻤﭽﻨﻴﻦ ﺑﺮﺧﻼﻑ  ﻣﻌﻤﺎﺭیﻫﺎی ﻣﺘﺪﺍﻭﻝ ﻋﻤﻞ ﻣﺪﻭﻻﺳﻴﻮﻥ ﺩﺭ ﻓﺮﻛﺎﻧﺲ ﺣﺎﻣﻞ ﺍﻧﺠﺎﻡ ﻧﻤﻰﺷﻮﺩ، ﺑﻠﻜﻪ ﺩﺭ ﻓﺮﻛﺎﻧﺲ ﻧﻮﺳﺎﻥﺳﺎﺯ ﻣﺮﺟﻊ MHz 34 ﺍﻧﺠﺎﻡ ﻣﻰﺷﻮﺩ. ﻓﺮﻛﺎﻧﺲ ﺳﻴﮕﻨﺎﻝ ﻣﺪﻭﻟﻪ ﺷﺪﻩ ﺩﺭ ﻓﺮﻛﺎﻧﺲ ﻣﺮﺟﻊ ﺑﺮﺍی ﺍﺭﺳﺎﻝ ﺍﺯ ﻃﺮﻳﻖ ﺁﻧﺘﻦ 12 ﺑﺮﺍﺑﺮ ﺍﻓﺰﺍﻳﺶ ﻳﺎﻓﺘﻪ؛ ﺑﻪ ﻓﺮﻛﺎﻧﺲ ﺳﻴﮕﻨﺎﻝ ﺣﺎﻣﻞ ﺧﻮﺍﻫﺪ ﺭﺳﻴﺪ. ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻭﻳﮋﮔﻰ ﻗﻔﻞ ﺗﺰﺭﻳﻖ ﻧﻮﻳﺰ ﻓﺎﺯ ﺳﻴﮕﻨﺎﻝ ﻣﺪﻭﻟﻪ ﺷﺪﮤ ﺍﺭﺳﺎﻟﻰ dBc/Hz 117-  ﺑﺎ ﺁﻓﺴﺖ ﻓﺮﻛﺎﻧﺴﻰ MHz 1 ﻭ ﺗﻮﺍﻥ ﻣﺼﺮﻓﻰ ﻓﺮﺳﺘﻨﺪﻩ μW 144  ﺑﺮﺍی ﺍﺭﺳﺎﻝ ﺳﻴﮕﻨﺎﻝ ﺑﺎ ﺗﻮﺍﻥ dBm 7/16- ﺍﺳﺖ. ﻓﺮﻛﺎﻧﺲ ﺳﻴﮕﻨﺎﻝ ﺣﺎﻣﻞ ﺍﺳﺖ ﻛﻪ ﺑﺮﺍی ﺭﺳﻴﺪﻥ ﺑﻪ ﺍﻳﻦ ﻓﺮﻛﺎﻧﺲ، ﻓﺮﻛﺎﻧﺲ ﺳﻴﮕﻨﺎﻝ ﻣﺮﺟﻊ MHz 34 ﺍﻧﺘﺨﺎﺏ ﻣﻰﺷﻮﺩ.

کلیدواژه‌ها

عنوان مقاله [English]

Low power MICS band Transmitter for Bio-Medical Sensor Nodes with Driving Capability by Energy Harvesting Systems

نویسندگان [English]

  • Hadi Borjkhani 1
  • Samad Sheikhaei 2
  • Mehdi Borjkhani 3

1 MSc. Graduated, School of Electrical and Computer Engineering, College of Engineering, University of Tehran

2 Assistant Professor, School of Electrical and Computer Engineering, College of Engineering, University of Tehran

3 PhD Candidate, School of Electrical and Computer Engineering, College of Engineering, University of Tehran - Instructor, Collage of Electrical Engineering, Urmia University of Technology

چکیده [English]

Currently need for ultra low power wireless transmitters in medical applications are inevitable. In this paper a new transmitter for body-worn and implantable sensor nodes is presented. Most of the sensor nodes supply their power using energy harvesting instead of a battery, since the power earned by harvesting is limited, so the average and the peak power consumption of the sensor node must be minimized. Transmitter blocks which implemented in sensor nodes are too power consuming. So a new low power Binary Frequency Shift Keying (BFSK) transmitter based on sub-harmonic current mode injection locking, and edge combining technique has been proposed. The proposed transmitter was designed to make a mutual communication between sensor node and base station, so there is no need for complexity at receiver side. In order to reduce the consuming power at transmitter side, BFSK modulation is done at reference frequency to prevent usage of power consuming low phase noise oscillator at carrier frequency. A 34MHz reference clock is used and the frequency of reference clock multiplied by 12 for desired carrier frequency. The phase noise of the carrier at 1MHz frequency offset is -117 dBc/Hz. Total power consumption of the transmitter is about 144μW. The output carrier frequency is 408MHz. BFSK modulation scheme is used at the frequency much lower than the carrier frequency in order to reduce the power consumption.

کلیدواژه‌ها [English]

  • Sensor Node
  • Low power Transmitter
  • Sub-Harmonic Injection Locking
  • Frequency Multiplication
  • Ring Oscillator
  • Edge Combine
[1]   Thomas, S. J.; Harrison, R. R.; Leonardo, A.; Reynolds, M. S.; ,ABattery-Free Multichannel Digital Neural/EMG Telemetry System for Flying Insects," Biomedical Circuits and Systems, IEEE Transactions on , vol.6, no.5, pp.424-436, Oct. 2012
[2]   Yeager, D.; Fan Zhang; Zarrasvand, A.; George, N.T.; Daniel, T.; Otis, B.P.; , "A 9   A, Addressable Gen2 Sensor Tag for Biosignal Acquisition," Solid-State Circuits, IEEE Journal of , vol.45, no.10, pp.2198-2209, Oct. 2010
[3]    Harrison, R.R.; Kier, R.J.; Leonardo, A.; Fotowat, H.; Chan, R.; Gabbiani, F.; , "A wireless neural/EMG telemetry system for freely moving insects," Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on , vol., no., pp.2940-2943, May 30 2010-June 2 2010
[4]   Jeremy Holleman ,Fang Zhang ,Brian Otis ,“Ultra Low-Power Integrated Circuit Design for Wireless Neural Interface,” Springer, 2011
[5]   Behzad Razavi, “RF Microelectronics,”2nd edition, Prentice Hall, 2012
[6]   Joonsung Bae; Long Yan; Hoi-Jun Yoo; , "A Low Energy Injection-Locked FSK Transceiver With Frequency-to-Amplitude Conversion for Body Sensor Applications," Solid-State Circuits, IEEE Journal of , vol.46, no.4, pp.928-937, April 2011
[7]   J. Pandey, B. P. Otis A“ Sub-100 W MICS/ISM Band Transmitter Based on Injection-Locking and Frequency Multiplication,” IEEE J. Solid-State Circuits , vol. 46, no. 5, May 2011
[8]   Takano, K.; Motoyoshi, M.; Fujishima, M., "4.8GHz CMOS frequency multiplier with subharmonic pulse-injection locking," Solid-State Circuits Conference, 2007. ASSCC '07. IEEE Asian , vol., no., pp.336,339, 12-14 Nov. 2007
[9]     Xiaolue Lai; Roychowdhury, J., "Analytical equations for predicting injection locking in LC and ring oscillators," Custom Integrated Circuits Conference, 2005. Proceedings of the IEEE 2005 , vol., no., pp.461,464, 18-21 Sept. 2005
[10]   T. Sakurai and R. Newton, “Alpha-power law MOSFET model andits applications to CMOS inverter delay and other formulas,” IEEE J.Solid-State Circuits, vol. 25, no. 2, pp. 584–594, Apr. 1990.
[11]   B. Otis, Ultra-low power wireless technologies for sensor  networks. Ph. D. thesis, University of California, Berkeley, Apr 2005
[12]   J. Bohorquez, A. Chandrakasan, and J. Dawson, “A 350 W CMOSMSK    transmitter and 400 W OOK super regenerative receiver for medical implant communications,” IEEE J. Solid-State Circuits, vol.44, no. 4, pp. 1248–1259, Apr. 2009.
[13 ]  S. Rai, J. Holleman, J. Pandey, F. Zhang, and B. Otis, “A 500 W neural tag with 2 AFE and frequency-multiplying MICS/ISM FSK transmitter,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig Tech. Papers, 2009.
[14]    Yao-Hong Liu; Tsung-Hsien Lin, "A Wideband      PLL-Based G/FSK Transmitter in 0.18 µm CMOS,"  Solid-State Circuits, IEEE Journal of , vol.44, no.9, pp.2452,2462, Sept. 2009  
[15]   Masuch, J.; Delgado-Restituto, M., "A Sub-10  nJ/b 1.9-dBm Output Power FSK Transmitter for Body Area Network Applications," Microwave Theory and Techniques, IEEE Transactions on , vol.60, no.5, pp.1413,1423, May 2012
[16]   Zhiming Chen; Kuang-Wei Cheng; Yuanjin Zheng; Minkyu Je, "A 3.4-mW 54.24-Mbps burst-mode injection-locked CMOS FSK transmitter," Solid State Circuits Conference (A-SSCC), 2011 IEEE Asian , vol., no., pp.289,292, 14-16 Nov. 2011
  [17]  Jri Lee; Wang, Huaide, "Study of Subharmonically Injection-Locked PLLs," Solid-State Circuits, IEEE Journal of , vol.44, no.5, pp.1539,1553, May 2009
[18]         Vittoz, E.A.; Degrauwe, M.G.R.; Bitz, S., "High-performance crystal oscillator circuits: theory and application," Solid-State Circuits, IEEE Journal of , vol.23, no.3, pp.774,783, June 1988