نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مکاترونیک، دانشکده‌ی مهندسی مکانیک، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 استادیار، گروه بیوالکتریک، دانشکده‌ی مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، تهران، ایران

3 استاد، دانشکده‌ی مهندسی مکانیک، دانشگاه مریلند، بالتیمور، ایالات متحده‌ی آمریکا / دانشگاه صنعتی امیرکبیر، تهران، ایران

10.22041/ijbme.2020.129143.1601

چکیده

با توجه به آمار بالای مبتلایان به بیماری‌های عروق مغزی و سکته‌ی مغزی که منجر به فلج شدن اندام‌های یک سمت بدن از جمله دست شده و هم‌چنین محدودیت‌های روش‌های سنتی توان‌بخشی، ساخت دستگاه‌هایی برای کمک به این افراد ضروری می‌باشد. در این پژوهش در ابتدا با توجه به چالش‌های موجود در طراحی یک برون‌پوش دست، طراحی اولیه‌ی یک مکانیسم برای استفاده به صورت حرکت غیرفعال پیوسته برای توان‌بخشی انگشتان دست انجام شده است. این مکانیسم مبتنی بر تاندون بوده و هر دو حرکت باز و بسته شدن انگشتان را پوشش می‌دهد. به این منظور در برون‌پوش از دو عمل‌گر فعال و غیرفعال به ترتیب جهت بستن و باز کردن انگشتان دست استفاده شده است. ویژگی بارز این طراحی، سبک و کم‌حجم بودن آن، قابلیت تنظیم برای دست‌های متفاوت و سازگاری و راحتی آن برای بیمار می‌باشد. هم‌چنین روابط سینماتیکی و دینامیکی برون‌پوش برای انگشتان دست به غیر از انگشت شست به روش لاگرانژ مدل‌سازی شده است. حرکت برون‌پوش در تعامل با انگشت به کمک نرم‌افزار سیم‌مکانیک متلب شبیه‌سازی شده است. در نهایت با استفاده از نتایج شبیه‌سازی و مدل‌سازی، طراحی نهایی با در نظر گرفتن نیروی 40 نیوتن در طول تاندون انجام شده و برون‌پوش برای انگشت اشاره ساخته شده است. هم‌چنین نتایج حاصل از مدل‌سازی تحلیلی و شبیه‌سازی مورد مقایسه قرار گرفته و میزان خطای مدل‌سازی برای تغییر زوایای مفاصل به دست آمده است. این مقدار در بیش‌ترین حالت برای مفصل اول و دوم انگشت برابر با 15% و برای مفصل سوم برابر با 20% محاسبه شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Modeling, Design, and Manufacture of Tendon-based Exoskeleton for Finger Rehabilitation

نویسندگان [English]

  • Elaheh Kafashi 1
  • Mohammad Ali Ahmadi Pajouh 2
  • Firooz Bakhtiari Nejad 3

1 M.Sc. Student, Mechatronics Group, Mechanical Engineering Department, Amirkabir University of Technology, Tehran, Iran

2 Assistant Professor, Bioelectrical Group, Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran

3 Professor, Mechanical Engineering Department, University of Maryland, Baltimore, USA / Amirkabir University of Technology, Tehran, Iran

چکیده [English]

Due to the high number of patients with cerebrovascular disease and stroke, which results in paralysis of organs on one side of the body, including the hand, as well as limitations in traditional rehabilitation methods, it is necessary to build devices to help these people. In this study, initially, given the challenges involved in designing an exoskeleton, the initial design was a mechanism for using it as a continuous passive motion to rehabilitate the fingers. This mechanism is tendon-based and covers both the flexion and extension of the fingers. For this purpose, two active and passive actuators have been used in the exoskeleton, respectively, to flex and extend the fingers. The distinctive feature of this design is its lightness, low volume, adjustability for different hands, compatibility, and comfort for the patient. Also, the kinematics and dynamics relationships modeled on the Lagrange method. The exoskeleton movement simulated in interaction with the finger with MATLAB sim-mechanics software. Finally, using simulation and modeling results, the final design was performed by considering the force of 40 N along the tendon, the exoskeleton made for the index finger. Also, the results of analytical modeling and simulation compared; the error rate of modeling obtained. In the worst case, this value was 15% for the first and second finger joints and 20% for the third joint.

کلیدواژه‌ها [English]

  • Exoskeleton
  • Rehabilitation
  • Passive motion
  • Tendon
  • Modeling
  • Fingers
  1. Z. Zheng, S. D. La Rosa, and A. M. Dollar, “An Investigation of Grasp Type and Frequency in Daily Household and Machine Shop Tasks,” pp. 4169–4175, 2011.
  2. S. Rathore, A. R. Hinn, L. S. Cooper, H. A. Tyroler, and W. D. Rosamond, “Characterization of Incident Stroke Signs and Symptoms,” 2015, doi: 10.1161/01.STR.0000035286.87503.31.
  3. J. Snoek, M. J. Ijzerman, H. J. Hermens, and D. Maxwell, “Survey of the needs of patients with spinal cord injury : impact and priority for improvement in hand function in tetraplegics,” pp. 526–532, 2004, doi: 10.1038/sj.sc.3101638.
  4. H. Kim, M. C. Jang, J. P. Seo, and S. H. Jang, “The Effect of a Hand-Stretching Device During the Management of Spasticity in Chronic Hemiparetic Stroke Patients,” vol. 37, no. 2, pp. 235–240, 2013.
  5. Yeh and J. J. Chen, “Quantifying the effectiveness of the sustained muscle stretching treatments in stroke patients with ankle hypertonia,” vol. 17, pp. 453–461, 2007, doi: 10.1016/j.jelekin.2006.07.001.
  6. Ueki, H. Kawasaki, S. Ito, and Y. Nishimoto, “Development of a Hand-Assist Robot With Multi-Degrees-of-Freedom for Rehabilitation Therapy,” vol. 17, no. 1, pp. 136–146, 2012.
  7. Moromugi, K. Kawakami, K. Nakamura, T. Sakamoto, and T. Ishimatsu, “A tendon-driven glove to restore finger function for disabled,” 2009.
  8. H. In, B. B. Kang, M. Sin, and K. Cho, “Exo-Glove A Wearable Robot for the Hand with a Soft Tendon Routing System,” no. march 2015, pp. 97–105.
  9. M. F. Vanoglio, A. Luisa, F. Garofali, “Evaluation of the effectiveness of gloreha (hand rehabilitation glove) on hemiplegic patients. pilot study,” 2013.
  10. “Gloreha glove.” http://www.gloreha.com/.
  11. M. Triandafilou, J. M. Ochoa, and D. G. Kamper, “Effect of Static versus Cyclical Stretch on Hand Motor Control in Subacute Stroke,” vol. 1, no. 3, pp. 1–5, 2014, doi: 10.4172/2376-0281.1000124.
  12. L. Hu, K. Y. Tong, X. J. Wei, W. Rong, E. A. Susanto, and S. K. Ho, “The effects of post-stroke upper-limb training with an electromyography (EMG) -driven hand robot,” vol. 23, pp. 1065–1074, 2013, doi: 10.1016/j.jelekin.2013.07.007.
  13. J. Nycz, B. Tobias, and O. Lambercy, “Design and Characterization of a Lightweight and Fully Portable Remote Actuation System for Use with a Hand Exoskeleton,” vol. 3766, no. c, pp. 1–8, 2016, doi: 10.1109/LRA.2016.2528296.
  14. Randazzo, “mano : A Wearable Hand Exoskeleton for Activities of Daily Living and Neurorehabilitation,” IEEE Robot. Autom. Lett., vol. 3, no. 1, pp. 500–507, 2018.
  15. ب. ساریخانی, “توسعه‌ی طراحی و ساخت ربات برون‌پوش حرکت غیر فعال پیوسته جهت توانبخشی انگشتان دست,” دانشگاه صنعتی امیرکبیر, 1397.
  16. H. Heidary and B. Beigzadeh, “Design New Cable System to Drive Exoskeleton Fingers for Rehabilitation,” Modares Mech. Eng., vol. 19, no. 1, pp. 201–209, 2019.
  17. Popov, I. Gaponov, and J. Ryu, “Portable Exoskeleton Glove with Soft Structure for Hand Assistance in Activities of Daily Living,” IEEE/ASME Trans. Mechatronics, vol. 4435, no. SEPTEMBER, pp. 1–11, 2016, doi: 10.1109/TMECH.2016.2641932.
  18. Borboni, M. Mor, and R. Faglia, “Gloreha-Hand Robotic Rehabilitation: Design, Mechanical Model, and Experiments,” J. Dyn. Syst. Meas. Control. Trans. ASME, vol. 138, no. 11, 2016, doi: 10.1115/1.4033831.
  19. Chen Chen, S. Appendino, A. Battezzato, A. Favetto, M. Mousavi, and F. Pescarmona, “Constraint Study for a Hand Exoskeleton: Human Hand Kinematics and Dynamics,” J. Robot., vol. 2013, 2013, doi: 10.1155/2013/910961.
  20. E. Milner and D. W. Franklin, “Characterization of Multijoint Finger Stiffness : Dependence on Finger Posture and Force Direction,” vol. 45, no. 11, pp. 1363–1375, 1998.
  21. Craig, Introduction to Robotics Mechanic, 2nd ed. 1989.
  22. D. Deshpande, N. Gialias, and Y. Matsuoka, “Contributions of Intrinsic Visco-Elastic Torques During Planar Index Finger and Wrist Movements,” vol. 59, no. 2, pp. 586–594, 2012.
  23. Ingvast and J. Wikander, “The Soft Extra Muscle System for Improving the Grasping Capability in Neurological Rehabilitation,” in 2012 IEEE EMBS International Conference on Biomedical Engineering and Sciences, 2012, no. December, pp. 412–417.
  24. B. Kang, H. Lee, H. In, U. Jeong, J. Chung, and K. Cho, “Development of a Polymer-Based Tendon-Driven Wearable Robotic Hand,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, pp. 3750–3755.
  25. Cao and D. Zhang, “Soft Robotic Glove with Integrated sEMG Sensing for Disabled People with Hand Paralysis,” in International Conference on Robotics and Biomimetics, 2016, pp. 714–718.
  26. Xiloyannis, L. Cappello, D. B. Khanh, S. Yen, and L. Masia, “Modelling and Design of a Synergy-based Actuator for a Tendon-driven Soft Robotic Glove,” in 6th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), 2016, pp. 1213–1219.
  27. Biggar, “Design and Evaluation of a Soft and Wearable Robotic Glove for Hand Rehabilitation,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 4320, no. c, 2016, doi: 10.1109/TNSRE.2016.2521544.
  28. O. Thielbar et al., “Benefits of using a voice and EMG - driven actuated glove to support occupational therapy for stroke survivors,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 4320, no. c, 2016, doi: 10.1109/TNSRE.2016.2569070.
  29. Kim, H. In, D. Lee, and K. Cho, “Development and assessment of a hand assist device : GRIPIT,” J. Neuroeng. Rehabil., pp. 1–14, 2017, doi: 10.1186/s12984-017-0223-4.
  30. Yao, C. Linnenberg, A. Argubi, R. Weidner, and J. P. Wulfsberg, “Biomimetic design of an ultra ‑ compact and light ‑ weight soft muscle glove,” Prod. Eng., vol. 11, no. 6, pp. 731–743, 2017, doi: 10.1007/s11740-017-0767-y.