نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده‌ی مهندسی پزشکی، دانشگاه صنعتی سهند، تبریز، ایران

2 استادیار، آزمایشگاه علوم اعصاب محاسباتی، دانشکده‌ی مهندسی پزشکی، دانشگاه صنعتی سهند، تبریز، ایران

10.22041/ijbme.2021.141428.1645

چکیده

در سال‌های اخیر تشخیص بیماری‌های عصبی پیش­رونده‌ی تدریجی به یکی از چالش‌برانگیزترین مسائل در حوزه‌ی پزشکی تبدیل شده است. اسکلروز جانبی آمیوتروفیک، پارکینسون و هانتینگتون مجموعه‌ای از شایع‌ترین بیماری‌های عصبی پیش‌رونده‌ی تدریجی بوده که بر کیفیت زندگی بیماران تاثیر به سزایی می­گذارند. وقوع این بیماری­ها به دلیل زوال سلول­های حرکتی سیستم عصبی است که می‌تواند منجر به اختلال در راه رفتن و عدم تقارن بین دو سمت بدن شود. از این رو در این مطالعه، در ابتدا با روش الگوریتم پیگیری تطبیقی سیگنال­های سری زمانی پای چپ و راست در فواصل گام، ایستایی و نوسانی تجزیه و تنک‌ شده، سپس میزان تطابق و همسانی ضرایب به دست آمده توسط یک سری ویژگی­های دینامیکی و دیفرانسیلی ارزیابی شده و اجزای اصلی این ویژگی­ها به عنوان ورودی به طبقه‌بند کم‌ترین مربعات غیرمنفی تنک‌ داده شده است. الگوریتم پیشنهادی به کمک پایگاه داده‌ی سیگنال راه رفتن شامل ۱۶ فرد سالم، ۱۵ فرد مبتلا به پارکینسون، ۲۰ فرد مبتلا به هانتینگتون و ۱۳ فرد مبتلا به اسکلروز جانبی آمیوتروفیک، آزمایش شده است. نتایج نشان داده که روش پیشنهادی قادر است به ترتیب برای هر سه بیماری اسکلروز جانبی آمیوتروفیک، پارکینسون و هانتینگتون میانگین صحت­های 10/84، 67/86 و 43/91 درصد را ارائه دهد.

کلیدواژه‌ها

عنوان مقاله [English]

Detection of Neurodegenerative Diseases using Time-Frequency Symmetric Features of Gait Signal

نویسندگان [English]

  • Masume Saljuqi 1
  • Peyvand Ghaderyan 2

1 M.Sc. Student, Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran

2 Assistant Professor, Computational Neuroscience Laboratory, Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran

چکیده [English]

In the recent years, the diagnosis of Neurodegenerative Diseases (NDDs) has been one of the most challenging problems in the medical fields. Amyotrophic Lateral Sclerosis (ALS), Parkinson's Disease (PD) and Huntington's Disease (HD) are a group of neurological disorders affecting the quality of patient’s life. Occurrence of these diseases is due to the deterioration of motor neurons, causing human gait disturbance and asymmetry between the right and left limbs. For this purpose, in this paper various gait signals namely stride, swing, and stance intervals (from both legs) have been decomposed using a Matching Pursuit (MP) algorithm. Then, two sets of differential and dynamic features have been extracted from the MP coefficients in order to quantify the amount of divergence between both limbs. Finally, the principal components of these features have been fed as an input to sparse Non-Negative Least Squares (NNLS) classifier. The proposed algorithm has been evaluated using the gait signals of 16 healthy control subjects, 13 patients with Amyotrophic Lateral Sclerosis (ALS), 15 patients with Parkinson’s Disease (PD) and 20 patients with Huntington’s Disease (HD). The results showed that the proposed method has achieved high average accuracy rates of 84.10%, 86.67%, and 91.43% for ALS, PD, and HD detection, respectively.

کلیدواژه‌ها [English]

  • Neurodegenerative Diseases
  • Gait Analysis
  • Time-Frequency Domain
  • Symmetry Features
  1. A. Lewis and J. E. Spillane, "Chapter 1 - An Introduction to Neurodegeneration," in The Molecular and Clinical Pathology of Neurodegenerative Disease, P. A. Lewis and J. E. Spillane Eds.: Academic Press, 2019, pp. 1-23.
  2. Prabhu, A. Karunakar, H. Anitha, and N. Pradhan, "Classification of gait signals into different neurodegenerative diseases using statistical analysis and recurrence quantification analysis," Pattern Recognition Letters, 2018.
  3. De Stefano, F. Fontanella, D. Impedovo, G. Pirlo, and A. Scotto di Freca, "Handwriting analysis to support neurodegenerative diseases diagnosis: A review," Pattern Recognition Letters, 2019.
  4. Ghaderyan and S. M. Ghoreshi Beyrami, "Neurodegenerative diseases detection using distance metrics and sparse coding: A new perspective on gait symmetric features," Computers in Biology and Medicine, 2020.
  5. I. Golbe, M. H. Mark, and J. Sage, Parkinson's Disease Handbook. American Parkinson Disease Association, 2009.
  6. Joshi, A. Khajuria, and P. Joshi, "An automatic non-invasive method for Parkinson's disease classification," (in eng), Comput Methods Programs Biomed, 2017.
  7. Xia, Q. Gao, Y. Lu, and Q. Ye, "A novel approach for analysis of altered gait variability in amyotrophic lateral sclerosis," (in eng), Med Biol Eng Comput, 2016.
  8. Prabhu, A. K. Karunakar, H. Anitha, and N. Pradhan, "Classification of gait signals into different neurodegenerative diseases using statistical analysis and recurrence quantification analysis," Pattern Recognition Letters, 2018.
  9. M. Hausdorff et al., "Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington's disease," (in eng), J Appl Physiol (1985), 1997.
  10. M. Hausdorff, M. E. Cudkowicz, R. Firtion, J. Y. Wei, and A. L. Goldberger, "Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson's disease and Huntington's disease," (in eng), Mov Disord, 1998.
  11. Hausdorff, A. Lertratanakul, M. Cudkowicz, A. Peterson, D. Kaliton, and A. Goldberger, "Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis," Journal of applied physiology (Bethesda, Md. : 1985), 2000.
  12. Ye, Y. Xia, and Z. Yao, "Classification of Gait Patterns in Patients with Neurodegenerative Disease Using Adaptive Neuro-Fuzzy Inference System," Computational and Mathematical Methods in Medicine, 2018.
  13. [ Shetty and Y. S. Rao, "SVM based machine learning approach to identify Parkinson's disease using gait analysis," in 2016 International Conference on Inventive Computation Technologies (ICICT), 2016.
  14. M. Cárdenas, C. Isaza, J. Uribe, and A. M. Hernadez, "Gait parameters identification for the differentiation of neurodegenerative diseases using classifiers," in 2018 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges (GMEPE/PAHCE), 2018.
  15. K. S. Jardine, D. Lin, and D. Banjevic, "A review on machinery diagnostics and prognostics implementing condition-based maintenance," Mechanical Systems and Signal Processing, 2006.
  16. Xia, Q. Gao, and Q. Ye, "Classification of gait rhythm signals between patients with neuro-degenerative diseases and normal subjects: Experiments with statistical features and different classification models," Biomedical Signal Processing and Control, 2015.
  17. H. Elden, W. Al-Atabany, and V. F. Ghoneim, "Gait Rhythm Fluctuations Assessment for Neurodegenerative Patients," in 2018 9th Cairo International Biomedical Engineering Conference (CIBEC), 2018.
  18. Boashash, "Time-Frequency Signal Analysis and Processing: A Comprehensive Reference," 2003.
  19. Yasharsarbaz, Farzadtowhidkhah, Shahriargharibzadeh, and Ayyoobjafari, "GAIT SPECTRAL ANALYSIS: AN EASY FAST QUANTITATIVE METHOD FOR DIAGNOSING PARKINSON'S DISEASE," Journal of Mechanics in Medicine and Biology, 2012.
  20. Sarbaz and A. Pourhedayat, "Spectral analysis of gait disorders in Huntington's disease: A new horizon to early diagnosis," Journal of Mechanics in Medicine and Biology, 2014.
  21. Banaie, M. Pooyan, and M. Mikaili, "Introduction and application of an automatic gait recognition method to diagnose movement disorders that arose of similar causes," Expert Systems with Applications, 2011.
  22. Dutta, A. Chatterjee, and S. Munshi, "Hybrid Correlation-Neural Network Synergy for Gait Signal Classification," Chapter in the book Amitava Chatterjee, Hadi Nobahari, Patrick Siarry (Eds.), Advances in Heuristic Signal Processing and Applications, 2013.
  23. D. Das, A. J. Saji, and C. S. Kumar, "Frequency analysis of gait signals for detection of neurodegenerative diseases," in 2017 International Conference on Circuit ,Power and Computing Technologies, 2017.
  24. Liao, J. Wang, and P. He, "Multi-resolution entropy analysis of gait symmetry in neurological degenerative diseases and amyotrophic lateral sclerosis," (in eng), Med Eng Phys, 2008.
  25. Sugavaneswaran, K. Umapathy, and S. Krishnan, "Ambiguity domain-based identification of altered gait pattern in ALS disorder," Journal of neural engineering, 2012.
  26. Baratin, L. Sugavaneswaran, K. Umapathy, C. Ioana, and S. Krishnan, "Wavelet-based characterization of gait signal for neurological abnormalities," (in eng), Gait Posture, 2015.
  27. Amin, Compressive sensing for urban radar. Crc Press, 2014.
  28. Abo-Zahhad, A. Hussein, and A. Mohamed, "Compressive Sensing Algorithms for Signal Processing Applications: A Survey," International Journal of Communications, Network and System Sciences, 2015.
  29. Qaisar, R. M. Bilal, W. Iqbal, M. Naureen, and S. Lee, "Compressive sensing: From theory to applications, a survey," Journal of Communications and Networks, 2013.
  30. Wacker and H. Witte, "Time-frequency techniques in biomedical signal analysis. a tutorial review of similarities and differences," (in eng), Methods Inf Med, 2013.
  31. Baumgartner et al., "Discussion of "time-frequency techniques in biomedical signal analysis: A tutorial review of similarities and differences"," Methods of Information in Medicine, 2013.
  32. Wu et al., "Measuring signal fluctuations in gait rhythm time series of patients with Parkinson's disease using entropy parameters," Biomedical Signal Processing and Control, 2017.
  33. Wu and L. Shi, "Analysis of altered gait cycle duration in amyotrophic lateral sclerosis based on nonparametric probability density function estimation," Medical Engineering & Physics, 2011.
  34. Ren et al., "Gait Rhythm Fluctuation Analysis for Neurodegenerative Diseases by Empirical Mode Decomposition," IEEE Transactions on Biomedical Engineering, 2017.
  35. Klomsae, S. Auephanwiriyakul, and N. Theera-Umpon, "String Grammar Unsupervised Possibilistic Fuzzy C-Medians for Gait Pattern Classification in Patients with Neurodegenerative Diseases," Computational Intelligence and Neuroscience, 2018.
  36. Ren, W. Zhao, Z. Zhao, M. L. Bringas-Vega, P. A. Valdes-Sosa, and K. M. Kendrick, "Analysis of Gait Rhythm Fluctuations for Neurodegenerative Diseases by Phase Synchronization and Conditional Entropy," IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016.
  37. Ren et al., "Movement Symmetry Assessment by Bilateral Motion Data Fusion," IEEE Transactions on Biomedical Engineering, 2019.
  38. Dutta, A. Chatterjee, and S. Munshi, "An automated hierarchical gait pattern identification tool employing cross-correlation-based feature extraction and recurrent neural network based classification," Expert Systems, 2009.
  39. D. Pham, "Texture Classification and Visualization of Time Series of Gait Dynamics in Patients With Neuro-Degenerative Diseases," (in eng), IEEE Trans Neural Syst Rehabil Eng 2018.
  40. Hossam Elden, V. Ghoneim, and W. Al-Atabany, A computer aided diagnosis system for the early detection of neurodegenerative diseases using linear and non-linear analysis. 2018.
  41. Viteckova, P. Kutilek, Z. Svoboda, R. Krupicka, J. Kauler, and Z. Szabo, "Gait symmetry measures: A review of current and prospective methods," Biomedical Signal Processing and Control, 2018.
  42. https://physionet.org/physiobank/database/gaitndd.
  43. Hausdorff, M. Md, R. Bs, P. Md, and A. Goldberger, "Gait variability and basal ganglia disorders: Stride-to-stride variations of gait cycle timing in Parkinson's disease and Huntington's disease," Movement Disorders, 1998.
  44. M. Hausdorff, Z. Ladin, and J. Y. Wei, "Footswitch system for measurement of the temporal parameters of gait," (in eng), Journal of biomechanics, 1995..
  45. G. Mallat and Z. Zhifeng, "Matching pursuits with time-frequency dictionaries," IEEE Transactions on Signal Processing, 1993.
  46. Chu, S. Narayanan, and C. C. J. Kuo, "Environmental Sound Recognition With Time–Frequency Audio Features," Audio, Speech, and Language Processing, IEEE Transactions on, 2009.
  47. Mori, A. Mendiburu, and J. Lozano, "Distance Measures for Time Series in R: The TSdist Package," The R Journal, 2016.
  48. ا. سالارپور و ح. ختن لو, "معیار شباهت مسیرهای حرکت مبتنی بر فاصله پاره خطی با استفاده از انحراف زمانی", مهندسی برق، دانشکده فنی دانشگاه تبریز, 1398.
  49. Prasath, H. Abu Alfeilat, O. Lasassmeh, A. Hassanat, and A. Tarawneh, "Distance and Similarity Measures Effect on the Performance of K-Nearest Neighbor Classifier - A Review," 2017.
  50. Marteau, "Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching," IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009.
  51. Serrà and J. L. Arcos, "An empirical evaluation of similarity measures for time series classification," Knowledge-Based Systems, 2014.
  52. "IEEE Standard on Transitions, Pulses, and Related Waveforms," 2003.
  53. Ghaderyan and A. Abbasi, "A novel cepstral-based technique for automatic cognitive load estimation," Biomedical Signal Processing and Control, 2018.
  54. Abdi and L. Williams, "Principal Component Analysis," Wiley Interdisciplinary Reviews: Computational Statistics, 2010.
  55. Ghaderyan, A. Abbasi, and A. Ebrahimi, "Time-varying singular value decomposition analysis of electrodermal activity: A novel method of cognitive load estimation," Measurement, 2018.
  56. Marziyeh Ghoreshi Beyrami and P. Ghaderyan, "A robust, cost-effective and non-invasive computer-aided method for diagnosis three types of neurodegenerative diseases with gait signal analysis," Measurement, 2020.
  57. Li and A. Ngom, "Classification approach based on non-negative least squares," Neurocomputing, 2013.
  58. Wu and S. Krishnan, "Statistical Analysis of Gait Rhythm in Patients With Parkinson's Disease," IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society, 2009..
  59. C. KS, A. Mishra, V. Shirhatti, and S. Ray, "Comparison of matching pursuit algorithm with other signal processing techniques for computation of the time-frequency power spectrum of brain signals," Journal of Neuroscience, 2016.
  60. Boashash, N. A. Khan, and T. Ben-Jabeur, "Time–frequency features for pattern recognition using high-resolution TFDs: A tutorial review," Digital Signal Processing, 2015.
  61. B. Davis, "Clinical gait analysis," IEEE Engineering in Medicine and Biology Magazine, 1988.
  62. Amin, A. Singhal, and J. K. Rai, "Identification and classification of neuro-degenerative diseases using statistical features and support vector machine classifier," in 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 2017.