نوع مقاله : مقاله کامل پژوهشی

نویسنده

استادیار، گروه الکترونیک و مهندسی پزشکی، دانشکده‌ی مهندسی برق، دانشگاه صنعتی شاهرود، شاهرود، ایران

10.22041/ijbme.2021.536135.1712

چکیده

امروزه قلب‌شنوایی یکی از راه‌های مهم و موثر در پایش بیماری‌های قلبی است. با پیش‌رفت تکنولوژی و تسهیل انجام دورمراقبتی از یک سو و افزایش نیاز به ضبط باکیفیت و طولانی‌مدت سیگنال صوتی قلب (PCG) از سوی دیگر، حجم داده‌های تولید شده افزایش پیدا کرده و بنابراین ذخیره‌سازی و انتقال این سیگنال‌ها با مشکل روبه‌رو شده است. این امر به نوبه‌ی خود اهمیت و ضرورت استفاده از روش‌های کارآمد فشرده‌سازی این نوع سیگنال‌ها را نشان می‌دهد. این روش‌ها باید میزان فشرده‌سازی بالا داشته و در عین حال کیفیت سیگنال و اطلاعات کلینیکی مهم را تا حد ممکن حفظ کنند. در این مقاله یک روش فشرده‌سازی با اتلاف برای سیگنال‌های PCG که با نرخ نمونه‌برداری نسبتا بالا ضبط شده پیشنهاد شده است به طوری که قادر به کنترل نسبی کیفیت سیگنال فشرده شده باشد. این روش مبتنی بر دو تکنیک نمونه‌کاهی دومرحله‌ای و انطباق الگو است. تکنیک پیشنهادی نمونه‌کاهی دومرحله‌ای موجب افزایش میزان فشرده‌سازی و کاهش حجم محاسبات می‌شود. تکنیک انطباق الگو نیز قادر به کاهش تزاید بین‌دوره‌ای و بنابراین افزایش میزان فشرده‌سازی است. نتایج شبیه‌سازی روش پیشنهادی روی دو پایگاه داده‌ی دانشگاه میشیگان و دانشگاه واشنگتن نشان داده که نمونه‌کاهی دومرحله‌ای و انطباق الگو سهم زیادی در افزایش میزان فشرده‌سازی دارند. کارایی روش پیشنهادی طبق معیارهای PRD و CR ارزیابی شده و با نتایج چند روش موجود مورد مقایسه قرار گرفته است. در این ارزیابی به ازای محدوده‌ی 5%PRD≤، مقدار CR برای پایگاه دانشگاه میشیگان بین 2500 تا 3900 و برای پایگاه دانشگاه واشنگتن بین 2500 تا 4125 به دست آمده است. هم‌چنین نتایج حاصل از اعمال روش پیشنهادی روی پایگاه داده‌ی پاسکال نشان داده که کارایی روش پیشنهادی تا حد زیادی به کیفیت و یک‌نواختی سیگنال‌های PCG ورودی بستگی دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

High-Sampling-Rate Heart Sound Compression based on Downsampling and Pattern Matching

نویسنده [English]

  • Hadi Grailu

Assistant Professor, Electronics and Biomedical Engineering Group, Electrical Engineering Department, Shahrood University of Technology, Shahrood, Iran

چکیده [English]

Today, auscultation is one of the most effective methods in monitoring heart disease. With the advancement of technology and the facilitation of telecare on the one hand, and the increasing need for high quality and long-term recording of cardiac audio signals on the other hand, the amount of data generated has increased and therefore, the storage and transmission of these signals has become a challenge. This, in turn, demonstrates the importance and necessity of using efficient methods for compression of these types of signals. In this paper, a lossy compression method is proposed for PCG signals recorded at a relatively high sampling rate so that it can control the quality of the compressed signal. This method is based on two techniques: "two-stage downsampling" and "pattern matching". The proposed two-stage downsampling technique increases the amount of compression ratio and at the same time reduces the computational complexity. The pattern matching technique is able to reduce the inter-period redundancy and therefore, increase the compression ratio. The simulation results of the proposed method on the two databases of the University of Michigan and the University of Washington showed that the two-stage downsampling and pattern matching techniques have a large contribution in increasing the compression ratio. The performance of the proposed method was evaluated according to the PRD and CR criteria and compared with that of some existing methods. In this evaluation, for the PRD range of 5%, the CR value was between 2500 and 3900 for the University of Michigan database and between 2500 and 4125 for the University of Washington database. Also, the results of applying the proposed method on the Pascal database showed that the efficiency of the proposed method depends to a large extent on the quality and regularity of the input PCG signals.

کلیدواژه‌ها [English]

  • Heart Sound Signal
  • Signal Compression
  • Pattern Matching
  • Downsampling
  1. -R. Chien, K.-Ch. Hsu, and H.-W. Tsao, "Phonocardiography Signals Compression with Deep Convolutional Autoencoder for Telecare Applications," Applied Sciences, Vol. 10, No. 17, p. 5842, Aug. 2020.
  2. Subasi, Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques: A MATLAB Based Approach, Academic Press, 2019.
  3. Nabil Boukhennoufa, Khier Benmahammed and Redha Benzid, “Effective PCG Signals Compression Technique Using an Enhanced 1-D EZW,” International Journal of Advanced Science and Technology, Vol. 48, pp. 89-102, November, 2012.
  4. S. Manikandan and S. Dandapat, "Wavelet-Based ECG and PCG Signals Compression Technique for Mobile Telemedicine," 15th International Conference on Advanced Computing and Communications (ADCOM 2007), pp. 164-169, Guwahati, India, 18-21 Dec. 2007.
  5. Sunjung Kim and Dosik Hwang, “Murmur-adaptive compression technique for phonocardiogram signals,” IEEE Electronics Letters, Vol. 52, No. 3, pp. 183-184, 4th February 2016.
  6. Bendifallah, M. Boulemden and R. Benzid, “Bitmask and SPIHT based PCG signal compression”, 2015 4th International Conference on Electrical Engineering (ICEE), 13-15 Dec. 2015, Boumerdes, Algeria.
  7. Chowdhury, K. Poudel, and Y. Hu, " Phonocardiography Data Compression using Discrete Wavelet Transform,"  2018 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), Philadelphia, PA, USA, 1-1 Dec. 2018.
  8. S. Manikandan, K. P. Soman, and S. Dandapat, "Quality-Driven Wavelet Based PCG Signal Coding for Wireless Cardiac Patient Monitoring," Proceedings of the 1st International Conference on Wireless Technologies for Humanitarian (ACWR 2011), pp. 519-526, Amritapuri, December 2011.
  9. M. Aljarin and R. R.- Merino, "Wavelet and Wavelet Packet Compression of Phonocardiograms," Electronic Letters, Vol. 40, No. 17, pp. 1040-1041, 2004.
  10. Aggarwal, S. Gupta, M. S. Patterh, and L. Kaur, "Analysis of Compressed Foetal Phono-Cardio-Graphy (PCG) Signals with Discrete Cosine Transform and Discrete Wavelet Transform," IETE Journal of Research, doi: 10.1080/03772063.2020.1725662, 2020.
  11. Qin and P. Wang, "A Remote Heart Sound Monitoring System Based on LZSS Lossless Compression Algorithm,"  2013 IEEE 4th International Conference on Electronics Information and Emergency Communication, Beijing, China, 15-17 Nov. 2013.
  12. Tang, J. Zhang, J. Sun, T. Qiu, and Y. Park, "Phonocardiogram signal compression using sound repetition and vector quantization," Computers in Biology and Medicine, Vol. 71, pp. 24-34, 2016.
  13. M. Alajarin, J. L.- Candel, and R. R.-Merino, " ASEPTIC: Aided system for event-based phonocardiographic telediagnosis with integrated compression," 2006 Computers in Cardiology, Valencia, Spain, 17-20 Sept. 2006.
  14. M. Alajarin, J. G.- Guerrero, and R. R.- Merino, " Optimization of the Compression Parameters of a Phonocardiographic Telediagnosis System Using Genetic Algorithms,"In: Mira J., Álvarez J.R. (eds) Bio-inspired Modeling of Cognitive Tasks. IWINAC pp. 508–517 June 2007.
  15. Patidar and R. B. Pachori, "Tunable-Q wavelet transform based optimal compression of cardiac sound signals," 2016 IEEE Region 10 Conference (TENCON), 2016, pp. 2193-2197, doi: 10.1109/TENCON.2016.7848416.
  16. M. Shapiro, "Embedded image coding using zerotrees of wavelet coefficients," IEEE Transactions on Signal Processing, Vol. 41, No. 12, pp. 3445–3462, 1993.
  17. Said, and W. A. Pearlman, "A new, fast, and efficient image codec based on set partitioning in hierarchical trees" IEEE Transactions on Circuits Systems and Video Technology, Vol. 6, No. 3, pp. 243–250, 1996.
  18. Said, and W. A. Pearlman, "Image compression using the spatial-orientation tree," in Proceedings of the IEEE International Symposium Circuits and Systems, pp. 279–282, 1993.
  19. Burger and M. J. burge, Principles of digital image processing: core algorithms, Springer, London, 2009.
  20. http://www.med.umich.edu/lrc/psb_open/html/repo/primer_heartsound/primer_heartsound.html. Accessed 1 Apr 2021.
  21. P Bentley, et al, PASCAL Classifying heart sounds challenge (2011). http://www. peterjbentley.com/heartchallenge/. Accessed 1 Apr 2021.
  22. http://depts.washington.edu/physdx/heart/demo.html. Accessed 1 Apr 2021.
  23. Stoica, Petre, and Randolph Moses. Spectral Analysis of Signals. Upper Saddle River, NJ: Prentice Hall, 2005.
  24. -G. Stark, Wavelets and Signal Processing: An Application-Based Introduction. Berlin Heidelberg: Springer, 2005.