نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 محقق، بیومکانیک، دانشکده‌ی مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 استادیار، بیومکانیک، دانشکده‌ی مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، تهران، ایران

10.22041/ijbme.2022.538500.1720

چکیده

امروزه موفقیت و شکست روش درمانی ایمپلنت‌گذاری، می­تواند تحت تاثیر پایداری اولیه‌ی ایمپلنت باشد. پایداری اولیه عبارت است از ظرفیت تحمل سازه‌ی ایمپلنت-استخوان در برابر بار­های وارده، بدون ایجاد آسیب­های جبران‌ناپذیر بر استخوان مجاور، که سبب شل شدن ایمپلنت و شکست فرایند ایمپلنت‌گذاری می­شود. هدف این مطالعه توسعه‌ی یک مدل میکروالمان محدود (μFE) اعتبارسنجی شده با داده­های آزمون مکانیکی برون‌تنی، به منظور بررسی پایداری اولیه از طریق اندازه­گیری سفتی و بار نهایی سازه‌ی ایمپلنت-استخوان در بارگذاری-باربرداری فشاری دوره­ای است. پس از آماده­سازی نمونه‌ی استخوان-ایمپلنت، آزمون مکانیکی بارگذاری-باربرداری فشاری دوره­ای به شکل شبه‌استاتیک، با نرخ 0024/0 mm/s به صورت مرحله به مرحله و جابه‌جایی-کنترل از دامنه‌ی 04/0 تا 28/1 میلی­متر به سازه‌ی استخوان-ایمپلنت اعمال شده است. سپس منحنی نیرو-جابه‌جایی به همراه سفتی سازه در هر جابه‌جایی اعمالی محاسبه شده است. پیش از اعمال بار، از استخوان تصاویر میکروسی‌تی گرفته شده و یک مدل μFE بر مبنای شرایط مرزی و بارگذاری-باربرداری آزمون مکانیکی ایجاد شده و منحنی نیرو-جابه‌جایی سازه استخراج گردیده است. در نهایت منحنی نیرو-جابه‌جایی پیش­بینی شده توسط مدل μFE با منحنی نیرو-جابه‌جایی به دست آمده از آزمون برون­تنی مقایسه شده و مدل μFE اعتبارسنجی شده است. نتایج نشان داده است که منحنی نیرو-جابه‌جایی پیش‌بینی شده توسط مدل μFE، تطابق قابل قبولی با نتایج حاصل از آزمون تجربی دارد. مدل μFE ارائه شده در این مطالعه، توانایی نشان دادن پاسخ کلی سازه‌ی استخوان-ایمپلنت را در تغییر شکل­های بزرگ داشته و می­تواند به عنوان ابزاری در جهت بهبود طراحی ایمپلنت­های دندانی با رویکرد افزایش پایداری اولیه در ایمپلنت­های دندانی بدون درنگ بارگذاری شده مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation on Primary Stability of Dental Implants: In-Vitro Cyclic Compressive Loading-Unloading and Micro-Finite Element Analysis

نویسندگان [English]

  • Pedram Akhlaghi 1
  • Setareh Khorshidparast 1
  • Gholamreza Rouhi 2

1 Researcher Engineer, Biomechanics, Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran

2 Assistant Professor, Biomechanics, Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran

چکیده [English]

Today, the success and failure of treatment by dental implants is influenced by the concept of primary and secondary stability. Primary stability is the capacity of the bone-implant system to withstand the loads, without noticeable damage to the adjacent bone, which may cause the implant to loosen, and thus the implantation process fails. The aim of this study was to develop a micro-finite element (μFE) model and validate it with an in-vitro mechanical test, in order to evaluate the primary stability of dental implants by measuring the stiffness and ultimate load of the bone-implant system through cyclic compressive loading-unloading test. After bone-implant preparation, a quasi-static compressive step-wise loading-unloading cycles, with a displacement rate of 0.0024 mm/s and displacement-controlled were applied to the bone-implant structure with the amplitudes of 0.04 mm to 1.28 mm. Force-displacement curve and the stiffness of the structure in each step then were obtained. Prior to loading, the bony sample was scanned through a μCT device and a μFE model was developed based on the boundary and loading conditions similar to the in-vitro test to predict the force-displacement curve of the structure. Finally, the predicted force-displacement curve from μFE model was compared with the results of the experimental in-vitro test. Results showed that the predicted force-displacement curve from the μFE model is in agreement with the results of the experimental test. The μFE model developed here has the capability to show the overall response of the bone-implant structure under large deformations, and can also be used as a tool to improve the design of the dental implants, with the ultimate goal of increasing the stability of dental implants in immediate loading dental implants.

کلیدواژه‌ها [English]

  • Dental Implant
  • Primary Stability
  • Bone-Implant Stiffness Micro-Finite Element
  • In-Vitro Cyclic Compressive Loading-Unloading Mechanical Test
  1. Turkyilmaz, U. Aksoy, E.A. McGlumphy, “Two alternative surgical techniques for enhancing primary implant stability in the posterior maxilla: a clinical study including bone density, insertion torque, and resonance frequency analysis data.” Clin Implant Dent Relat Res, 10(4) (2008) 231-237.
  2. Tettamanti, “Immediate loading implants: review of the critical aspects,” Oral Implantol, 10(2) (2017) 129.
  3. Haiat, “Effects of biomechanical properties of the bone–implant interface on dental implant stability: from in silico approaches to the patient's mouth,” Annu Rev Biomed Eng, 16 (2014) 187-213.
  4. Basler, “Towards validation of computational analyses of peri-implant displacements by means of experimentally obtained displacement maps,” Comput Methods Biomech Biomed Engin, 14(02) (2011) 165-174.
  5. L. Rao, “Primary stability: The password of implant integration,” J Dent Implant, 2(2) (2012) 103-109.
  6. -I. Branemark, “Osseointegration in Skeletal Reconstruction and Joint Replacement,” Second International Workshop on Osseointegration in Skeletal Reconstruction and Joint Replacement, Rancho Santa Fe, Calif., October 27-29, 1994, Quintessence, 1997.
  7. Voumard, “Peroperative estimation of bone quality and primary dental implant stability,” J Mech Behav Biomed Mater, 92 (2019) 24-32.
  8. Wolfram, “Damage accumulation in vertebral trabecular bone depends on loading mode and direction,” J Biomech, 44(6) (2011) 1164-1169.
  9. Marchetti, “Evaluation of an endosseous oral implant system according to UNI EN ISO 14801 fatigue test protocol,” Implant dentistry, 23(6) (2014) 665-671.
  10. A. Steiner, “Computational analysis of primary implant stability in trabecular bone,” Implant dentistry, 48(5) (2015) 807-815.
  11. Chevalier, “Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation,” Journal of biomechanics, 40(15) (2007) 3333-3340.
  12. J. Wirth, “The discrete nature of trabecular bone microarchitecture affects implant stability,” J Biomech, 45(6) (2012) 1060-1067.
  13. Zysset, “A 3D damage model for trabecular bone based on fabric tensors,” J Biomech, 29(12) (1996) 1549-1558.
  14. Verhulp, E., “Indirect determination of trabecular bone effective tissue failure properties using micro-finite element simulations”. Journal of biomechanics, 41(7) (2008), 1479-1485.
  15. J. Mirzaali, “Continuum damage interactions between tension and compression in osteonal bone,” J Mech Behav Biomed Mater, 49 (2015) 355-369.
  16. Werner, “An explicit micro‐FE approach to investigate the post‐yield behaviour of trabecular bone under large deformations,” Int J Numer Method Biomed Eng, 35(5) (2019) e3188.
  17. Ovesy, “Prediction of insertion torque and stiffness of a dental implant in bovine trabecular bone using explicit micro-finite element analysis,” J Mech Behav Biomed Mater, 98 (2019) 301-310.
  18. Limbert, “Trabecular bone strains around a dental implant and associated micromotions—A micro-CT-based three-dimensional finite element study,” J Biomech, 43(7) (2010) 1251-1261.
  19. H. Korayem, “Investigating the effective parameters in the Atomic Force Microscope–based dynamic manipulation of rough micro/nanoparticles by using the Sobol sensitivity analysis method,” Simulation, 91(12) (2015) 1068-1080.
  20. -L. Huang, “Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant: a non-linear finite element study,” J of Dent, 36(6) (2008) 409-417.
  21. Ovesy, “A nonlinear homogenized finite element analysis of the primary stability of the bone–implant interface,” Biomech Model Mechanobiol, 17(5) (2018) 1471-1480.
  22. A. Steiner, “Screw insertion in trabecular bone causes peri-implant bone damage,” Med Eng Phys, 38(4) (2016) 417-422.
  23. A. Steiner, “A novel in silico method to quantify primary stability of screws in trabecular bone,” J. Orthop. Res., 35(11) (2017) 2415-2424. (25)
  24. A. Steiner,” Patient‐specific in silico models can quantify primary implant stability in elderly human bone,” J. Orthop. Res., 36(3) (2018) 954-962. (26)
  25. Cowin, J. Telega, “Bone mechanics handbook”, Appl. Mech. Rev., 56(4) (2003) B61-B63. (23).
  26. A. Bagheri, “Design and numerical investigation of an adaptive intramedullary nail with a novel interlocking mechanism,” J Comput Des Eng, 7(6) (2020) 722-735. (24).