نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده‌ی مهندسی پزشکی، دانشگاه صنعتی سهند، تبریز، ایران

2 دانشیار، آزمایشگاه علوم اعصاب محاسباتی، دانشکده‌ی مهندسی پزشکی، دانشگاه صنعتی سهند، تبریز، ایران

10.22041/ijbme.2022.542095.1733

چکیده

اختلال وسواس اجباری چهارمین اختلال روانی شایع و دهمین علت ناتوانی در سراسر جهان است. این بیماری می‌تواند منجر به اختلال در عمل‌کردهای مختلف شناختی مانند توجه، حافظه، تفکر، پردازش شنیداری کلمات و شناخت بصری شود. مطالعات گذشته نشان دهنده‌ی تغییر در ارتباط بین فعالیت لوب‌های مختلف مغز بیماران مبتلا به وسواس اجباری است. از این رو کمی‌سازی تقارن و ارتباطات بین نواحی مختلف مغزی توجه زیادی را به خود جلب کرده است. در این مطالعه رویکردی جدید و کارآمد بر اساس نمایش تحلیلی سیگنال‌های الکتروانسفالوگرام و ویژگی‌های آماری ارائه شده است تا امکان کمی‌سازی تفاوت مولفه‌های ذاتی مربوط به فعالیت‌های مغزی بین لوب‌های مغز فراهم شود. بدین منظور پوش‌های فاز و دامنه‌ی سیگنال‌های تحلیلی الکتروانسفالوگرام استخراج و تجزیه و تحلیل شده است. هم‌چنین از روش طبقه‌بندی کم‌ترین مربعات غیرمنفی تنک برای تمایز بین گروه سالم و بیماران مبتلا به اختلال وسواس اجباری استفاده شده است. قابلیت تمایز روش پیشنهادی با داده‌های الکتروانسفالوگرام 19 فرد سالم و 11 بیمار حین انجام تکالیف ساده‌ی فلانکر مورد مطالعه قرار گرفته است. نتایج به دست آمده، موثر بودن ترکیب اطلاعات دامنه و فاز در تشخیص بیماری وسواس اجباری را با میانگین صحت 78/93 درصد نشان داده است. در مقایسه بین نواحی مختلف نیز ویژگی‌های مستخرج بین نیم‌کره‌‌های مغزی و آن‌هایی که از لوب پیشانی و شبکه‌ی پیشانی-آهیانه‌ای استخراج شده‌اند، کارایی بیش‌تری در تشخیص بیماری از خود نشان داده‌اند. هم‌چنین این مطالعه اهمیت بیش‌تر استفاده از اطلاعات دامنه در تشخیص اختلال وسواس اجباری را نشان داده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Sparse Coding Classification and Analytic EEG Signal Representation for Obsessive Compulsive Disorder Detection

نویسندگان [English]

  • Farzaneh Manzari 1
  • Peyvand Ghaderyan 2

1 M.Sc. Student, Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran

2 Associate Professor, Computational Neuroscience Laboratory, Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran

چکیده [English]

Obsessive-Compulsive Disorder (OCD) is the fourth most common mental disorder and the tenth cause of disability worldwide. This disorder can lead to cognitive impariments in attention, memory, thinking, auditory processing of words and visual cognition. Previous studies have demonstrated that OCD is associated with changes in connectivity between different lobes of the brain. Hence, the quantification of symmetry and connectivity between different brain regions has attracted great attention. This study has provided a new efficient approach based on analytic representation of EEG signals and statistical features to quantify the difference of intrinsic components of brain activity between brain lobes. For this purpose, phase spectra and amplitude envelopes of the analytic EEG signals have been extracted and analyzed. Furthermore, Non-Negative Least Square sparse classification method has been used for discriminating between healthy control group and OCD patients. The detection capability of the proposed method has been studied in 19 healthy subjects and 11 patients, performing simple flanker tasks. The obtained results have demonstrated the effectiveness of the combined amplitude and phase information in OCD detection with high average accuracy rate of 93.78 %. In comparison between different regions, the inter-hemispheric features and those extracted from the frontal lobe and frontal-parietal network have shown more efficiency in diagnosing the OCD. This study has also highlighted more importance of amplitude information in the OCD detection.

کلیدواژه‌ها [English]

  • Empirical Mode Decomposition (EMD)
  • Statistical Features
  • Non-Negative Least Square Sparse (NNLS)
  • Amplitude Envelope
  • Phase Spectra
  • Flanker Task
  1. Tan, Q. Liu, C. Wan, Z. Jin, Y. Yang, and L. Li, "Altered functional connectivity of alpha rhythm in obsessive-compulsive disorder during rest," Clinical EEG and neuroscience, vol. 50, no. 2, pp. 88-99, 2019.
  2. Ferreira, J. M. Pego, and P. Morgado, "The efficacy of biofeedback approaches for obsessive-compulsive and related disorders: A systematic review and meta-analysis," Psychiatry Research, vol. 272, pp. 237-245, 2019.
  3. Kamaradova et al., "Cognitive deficits in patients with obsessive–compulsive disorder–electroencephalography correlates," Neuropsychiatric Disease and Treatment, vol. 12, p. 1119, 2016.
  4. Yazdi-Ravandi et al., "Differential pattern of brain functional connectome in obsessive-compulsive disorder versus healthy controls," EXCLI journal, vol. 17, p. 1090, 2018.
  5. Lagemann et al., "Early orbitofrontal hyperactivation in obsessive–compulsive disorder," Psychiatry Research: Neuroimaging, vol. 202, no. 3, pp. 257-263, 2012.
  6. B. Pachori and V. Bajaj, "Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition," Computer methods and programs in biomedicine, vol. 104, no. 3, pp. 373-381, 2011.
  7. A. Özçoban, O. Tan, and A. Akan, "Analysis of frontal phase synchronization in OCD patients," in 2018 26th Signal Processing and Communications Applications Conference (SIU), 2018: IEEE, pp. 1-4.
  8. Kamaradova et al., "EEG correlates of induced anxiety in obsessive–compulsive patients: comparison of autobiographical and general anxiety scenarios," Neuropsychiatric disease and treatment, vol. 14, p. 2165, 2018.
  9. Aydin, N. Arica, E. Ergul, and O. Tan, "Classification of obsessive compulsive disorder by EEG complexity and hemispheric dependency measurements," International journal of neural systems, vol. 25, no. 03, p. 1550010, 2015.
  10. W. SHIN, T. H. Ha, S. Y. Kim, and J. S. Kwon, "Association between EEG alpha power and visuospatial function in obsessive–compulsive disorder," Psychiatry and Clinical Neurosciences, vol. 58, no. 1, pp. 16-20, 2004.
  11. Olbrich, H. Olbrich, M. Adamaszek, I. Jahn, U. Hegerl, and K. Stengler, "Altered EEG lagged coherence during rest in obsessive–compulsive disorder," Clinical Neurophysiology, vol. 124, no. 12, pp. 2421-2430, 2013.
  12. M. N. Perera, N. W. Bailey, S. E. Herring, and P. B. Fitzgerald, "Electrophysiology of obsessive compulsive disorder: a systematic review of the electroencephalographic literature," Journal of Anxiety Disorders, vol. 62, pp. 1-14, 2019.
  13. O. Gründler, J. F. Cavanagh, C. M. Figueroa, M. J. Frank, and J. J. Allen, "Task-related dissociation in ERN amplitude as a function of obsessive–compulsive symptoms," Neuropsychologia, vol. 47, no. 8-9, pp. 1978-1987, 2009.
  14. -L. Dohrmann, K. Stengler, I. Jahn, and S. Olbrich, "EEG-arousal regulation as predictor of treatment response in patients suffering from obsessive compulsive disorder," Clinical Neurophysiology, vol. 128, no. 10, pp. 1906-1914, 2017.
  15. Shrivastava, A. K. Tripathy, and P. K. Dalal, "A SVM-based classification approach for obsessive compulsive disorder by oxidative stress biomarkers," Journal of Computational Science, vol. 36, p. 101023, 2019.
  16. Tan and S. Aydin, "Electroencephalographic Complexity and Decreased Randomness in Drug-Naive Obsessive-Compulsive Patients," Dusunen Adam The Journal of Psychiatry and Neurological Sciences, vol. 30, no. 2, p. 101, 2017.
  17. Ozel, A. Karaca, A. Olamat, A. Akan, M. A. Ozcoban, and O. Tan, "Intrinsic Synchronization Analysis of Brain Activity in Obsessive–compulsive Disorders," International Journal of Neural Systems, vol. 30, no. 09, p. 2050046, 2020.
  18. B. Altuğlu et al., "Prediction of treatment resistance in obsessive compulsive disorder patients based on EEG complexity as a biomarker," Clinical Neurophysiology, vol. 131, no. 3, pp. 716-724, 2020.
  19. Z. Metin et al., "Use of EEG for Predicting Treatment Response to Transcranial Magnetic Stimulation in Obsessive Compulsive Disorder," Clinical EEG and Neuroscience, vol. 51, no. 3, pp. 139-145, 2020.
  20. Wolff, W. Chmielewski, J. Buse, V. Roessner, and C. Beste, "Paradoxical response inhibition advantages in adolescent obsessive compulsive disorder result from the interplay of automatic and controlled processes," NeuroImage: Clinical, vol. 23, p. 101893, 2019.
  21. -K. Min, S. J. Kim, J. Y. Park, and H.-J. Park, "Prestimulus top-down reflection of obsessive-compulsive disorder in EEG frontal theta and occipital alpha oscillations," Neuroscience letters, vol. 496, no. 3, pp. 181-185, 2011.
  22. Lei et al., "Abnormal small-world brain functional networks in obsessive-compulsive disorder patients with poor insight," Journal of Affective Disorders, vol. 219, pp. 119-125, 2017.
  23. Velikova, M. Locatelli, C. Insacco, E. Smeraldi, G. Comi, and L. Leocani, "Dysfunctional brain circuitry in obsessive–compulsive disorder: source and coherence analysis of EEG rhythms," Neuroimage, vol. 49, no. 1, pp. 977-983, 2010.
  24. Desarkar, V. K. Sinha, K. Jagadheesan, and S. H. Nizamie, "Subcortical functioning in obsessive-compulsive disorder: an exploratory EEG coherence study," The World Journal of Biological Psychiatry, vol. 8, no. 3, pp. 196-200, 2007.
  25. Perros, E. S. Young, J. J. Ritson, G. W. Price, and P. Mann, "Power spectral EEG analysis and EEG variability in obsessive-compulsive disorder," Brain Topography, vol. 4, no. 3, pp. 187-192, 1992.
  26. A. Özçoban, O. Tan, S. Aydin, and A. Akan, "Decreased global field synchronization of multichannel frontal EEG measurements in obsessive-compulsive disorders," Medical & biological engineering & computing, vol. 56, no. 2, pp. 331-338, 2018.
  27. Aydın and O. Tan, "Classification of band-specific regional hemispheric connectivity in obsessive compulsive disorder," in 2017 25th Signal Processing and Communications Applications Conference (SIU), 2017: IEEE, pp. 1-4.
  28. Chandel, O. Farooq, M. H. N. Shaikh, and P. M. Shanir, "Seizure detection in neonatal EEG signals using EMD based features," in 2017 International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT), 2017: IEEE, pp. 89-93.
  29. Hadoush, M. Alafeef, and E. Abdulhay, "Automated identification for autism severity level: EEG analysis using empirical mode decomposition and second order difference plot," Behavioural brain research, vol. 362, pp. 240-248, 2019.
  30. A. Özçoban, S. Kara, O. Tan, and S. Aydın, "Investigation the level of neural synchronization by using global field synchronization method in Obsessive Compulsive Disorder," in 2014 18th National Biomedical Engineering Meeting, 2014: IEEE, pp. 1-3.
  31. Ghaderyan and A. Abbasi, "Dynamic Hilbert warping, a new measure of RR-interval signals evaluated in the cognitive load estimation," Medical engineering & physics, vol. 40, pp. 103-109, 2017.
  32. Li and A. Ngom, "Classification approach based on non-negative least squares," Neurocomputing, vol. 118, pp. 41-57, 2013.
  33. Ghaderyan, A. Abbasi, and S. Saber, "A new algorithm for kinematic analysis of handwriting data; towards a reliable handwriting-based tool for early detection of alzheimer's disease," Expert Systems with Applications, vol. 114, pp. 428-440, 2018.
  34. Ghaderyan and S. M. G. Beyrami, "Neurodegenerative diseases detection using distance metrics and sparse coding: A new perspective on gait symmetric features," Computers in biology and medicine, vol. 120, p. 103736, 2020.
  35. M. G. Beyrami and P. Ghaderyan, "A robust, cost-effective and non-invasive computer-aided method for diagnosis three types of neurodegenerative diseases with gait signal analysis," Measurement, vol. 156, p. 107579, 2020.
  36. Chaumon, D. V. Bishop, and N. A. Busch, "A practical guide to the selection of independent components of the electroencephalogram for artifact correction," Journal of neuroscience methods, vol. 250, pp. 47-63, 2015.
  37. Saifutdinova, J. Koprivova, L. Lhotska, and M. Macas, "Topological properties of functional brain connectivity in obsessive-compulsive disorder," in XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016, 2016: Springer, pp. 157-161.
  38. A. Rios and R. F. de Mello, "Applying empirical mode decomposition and mutual information to separate stochastic and deterministic influences embedded in signals," Signal Processing, vol. 118, pp. 159-176, 2016.
  39. Li, W. Zhou, Q. Yuan, S. Geng, and D. Cai, "Feature extraction and recognition of ictal EEG using EMD and SVM," Computers in biology and medicine, vol. 43, no. 7, pp. 807-816, 2013.
  40. Ghaderyan and A. Abbasi, "An efficient automatic workload estimation method based on electrodermal activity using pattern classifier combinations," International Journal of Psychophysiology, vol. 110, pp. 91-101, 2016.
  41. -J. Kwon, J.-H. Im, M. R. Siddiqi, and J. Hur, "Detection Technique for Manufacturing Imperefection of Rare-earth Magnets on IPMSM," in 2020 IEEE Energy Conversion Congress and Exposition (ECCE), 2020: IEEE, pp. 1407-1410.
  42. Ş. Tot, A. Özge, Ü. Çömelekoğlu, K. Yazici, and N. Bal, "Association of QEEG findings with clinical characteristics of OCD: evidence of left frontotemporal dysfunction," The Canadian Journal of Psychiatry, vol. 47, no. 6, pp. 538-545, 2002.
  43. A. Özçoban and A. Akan, "Frontal Synchronization Biases in Obsessive-Compulsive Disorders," in 2019 Medical Technologies Congress (TIPTEKNO), 2019: IEEE, pp. 1-4.
  44. Ischebeck, T. Endrass, D. Simon, and N. Kathmann, "Altered frontal EEG asymmetry in obsessive‐compulsive disorder," Psychophysiology, vol. 51, no. 7, pp. 596-601, 2014.
  45. Ghaderyan, A. Abbasi, and M. H. Sedaaghi, "An efficient seizure prediction method using KNN-based undersampling and linear frequency measures," Journal of neuroscience methods, vol. 232, pp. 134-142, 2014.
  46. Pudil, J. Novovičová, and J. Kittler, "Floating search methods in feature selection," Pattern Recognition Letters, vol. 15, no. 11, pp. 1119-1125, 1994.
  47. F. Cavanagh, T. O. J. Gründler, M. J. Frank, and J. J. B. Allen, "Altered cingulate sub-region activation accounts for task-related dissociation in ERN amplitude as a function of obsessive-compulsive symptoms," Neuropsychologia, vol. 48, no. 7, pp. 2098-2109, 2010/06/01/ 2010, doi: https://doi.org/10.1016/j.neuropsychologia.2010.03.031.
  48. F. Cavanagh, M. X. Cohen, and J. J. Allen, "Prelude to and resolution of an error: EEG phase synchrony reveals cognitive control dynamics during action monitoring," Journal of Neuroscience, vol. 29, no. 1, pp. 98-105, 2009.
  49. Karadag, N. K. Oguzhanoglu, T. KURT, A. Oguzhanoglu, F. Atesci, and O. ÖZDEL, "Quantitative EEG analysis in obsessive compulsive disorder," International journal of neuroscience, vol. 113, no. 6, pp. 833-847, 2003.
  50. Akan, M. A. Özçoban, and O. Tan, "Investigation of EEG relative power spectral changes in obsesive compulsive disorder patients," in 2017 Medical Technologies National Congress (TIPTEKNO), 2017: IEEE, pp. 1-4.
  51. T. Erguzel, S. Ozekes, G. H. Sayar, O. Tan, and N. Tarhan, "A hybrid artificial intelligence method to classify trichotillomania and obsessive compulsive disorder," Neurocomputing, vol. 161, pp. 220-228, 2015.
  52. Hazarika, J. Z. Chen, A. C. Tsoi, and A. Sergejew, "Classification of EEG signals using the wavelet transform," Signal processing, vol. 59, no. 1, pp. 61-72, 1997.
  53. Ozel, A. Olamat, and A. Akan, "A Diagnostic Strategy via Multiresolution Synchrosqueezing Transform on Obsessive Compulsive Disorder," International Journal of Neural Systems, vol. 31, no. 12, p. 2150044, 2021.