نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی برق، دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی نوشیروانی بابل، مازندران، ایران

2 استاد، دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی نوشیروانی بابل، مازندران، ایران

3 استادیار، دانشکده مهندسی برق و کامپیوتر - دانشگاه بجنورد– بجنورد، ایران

4 استادیار، دانشکده آناتومی و نوروبیولوژی- دانشگاه مرکز علوم بهداشت تنسی– ممفیس - امریکا

چکیده

پیش­بینی بیماری آلزایمر بر‌اساس تجزیه و تحلیل شبکة مغز، موضوع بسیاری از مطالعات شده است. هدف ما شناسایی تغییرات در مغز بیمارانی است که از اختلال خفیف شناختی، دچار آلزایمر شده­اند یا دچار آلزایمر نشده­اند، برای ارائة الگوریتمی برای طبقه­بندی این بیماران با استفاده از روش تئوری گراف و اطلاعات آماری. در این الگوریتم، تجزیه و تحلیل همبستگی متمایز را پیشنهاد کردیم و روش ادغام در سطح ویژگی برای تشخیص بیومتریک اعمال شد. با توجه به نتایج شبیه‌سازی، دقت 167/87 درصد برای پیش‌بینی بیماری آلزایمر با استفاده از تجزیه و تحلیل همبستگی متمایز و طبقه‌بندی‌کنندة ماشین بردار پشتیبان به‌دست آمد. همچنین تجزیه و تحلیل روی گره­های مهم مغز (هاب­ها) را انجام دادیم و تعدادی از نقاط مهم مغز در بیماران آلزایمری پیشرونده را پیدا کردیم. در حقیقت، این پژوهش، اولین مطالعة­ شناختی با استفاده از ادغام تصویر‌برداری تشدید مغناطیسی حالت استراحت (rs-fMRI) و تصویربرداری تشدید مغناطیسی ساختاری (sMRI) برای تشخیص تبدیل از اختلال شناختی خفیف به بیماری آلزایمر است. روش پیشنهادی، بر پتانسیل استفاده از داده­های تصویر‌برداری rs-fMRI و sMRI، را برای تشخیص پیشرفت بیماری در مراحل اولیه تأکید می­کند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Predicting Alzheimer’s Disease using DCA Fusion Algorithm based on rs-fMRI and sMRI

نویسندگان [English]

  • Seyed Hani Hojjati 1
  • Ataollah Ebrahimzadeh 2
  • Ali Khazaee 3
  • Abbas Babajani-Fermi 4

1 Ph.D Student, Electrical Engineering, Department of Electrical Engineering, Babol University of Technology, Babol, Iran

2 Professor, Department of Electrical Engineering, Babol University of Technology, Babol, Iran,

3 Assistant Professor, Department of Electrical Engineering, University of Bojnord, Bojnord, Iran

4 Assistant Professor, Department of Pediatrics, Division of Clinical Neurosciences, University of Tennessee Health Science Center, Memphis, TN, USA

چکیده [English]

Predicting AD based on Brain network analysis has been the subject of much investigation. Here, we aim to identify the changes in brain in patients that conversion from (Mild Cognitive Impariment) MCI to AD (MCI-C) and non conversion from MCI to AD (MCI-NC), to provide an algorithm for classification of these patients by using a graph theoretical approach. In this algorithm we proposed Discriminant Correlation Analysis (DCA), feature level fusion for multimodal biometric recognition method were applied to the original feature sets. An accuracy of 86/167% was achieved for predicting AD using the DCA and the support vector machine classifier. We also performed a hub node analysis and found the number of hubs in progressive AD patients. Indeed, this is the first neuroimaging study that integrates rs-fMRI with sMRI for detecting conversion from MCI to AD. The proposed classification method highlights the potential of using both resting state fMRI and MRI data for identification of the early stage of AD.

کلیدواژه‌ها [English]

  • Predicting Alzheimer’s Disease
  • Graph Theory
  • Statistical Information
  • MRI
  • Hub Node
  • DCA
[1]     Strassnig M, Ganguli M. About a peculiar disease of the cerebral cortex: Alzheimer's original case revisited. Psychiatry (Edgmont). 2005;2:30.
[2]     Howseman AM, Bowtel RW. Functional magnetic resonance imaging: imaging techniques and contrast mechanisms. Philosophical Transactions of the Royal Society B: Biological Sciences. 1999;354:1179-94.
[3]     Kaustubh Supekar VM, Daniel Rubin, Mark Musen, Michael D. Greicius. Network Analysis of Intrinsic Functional Brain Connectivity in Alzheimer's Disease. Computational Biology. June 27, 2008.
[4]     Casey C. Armstrong TDM, Jamie D. Feusner, James T. McCracken, Susanna Chang, Jennifer G. Levitt, John C. Piacentini, Joseph O’Neill. Graph-theoretical analysis of resting-state fMRI in pediatric obsessive–compulsive disorder. 2016;193:175–84.
[5]     Jieqiong Wang TL, Ningli Wang, Junfang Xian , Huiguang He. Graph theoretical analysis reveals the reorganization of the brain net. 2016.
[6]     Simon F. Eskildsena, Pierrick Coupé, Daniel García-Lorenzo, Vladimir Fonov, Jens C. Pruessner, D. Louis Collins. Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning. 2013;65:511–21.
[7]     Robin Wolz VJ, Juha Koikkalainen, Eini Niskanen, Dong Ping Zhang, Daniel Rueckert, Hilkka Soininen, Jyrki Lötjönen. Multi-Method Analysis of MRI Images in Early Diagnostics of Alzheimer's Disease. 2016.
[8]     Elaheh Moradi AP, Christian Gaser, Heikki Huttunen, Jussi Tohka. Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects. 2015;104:398–412.
[9]     Daoqiang Zhang DS. Predicting Future Clinical Changes of MCI Patients Using Longitudinal and Multimodal Biomarkers. 2016.
[10] Davatzikos C, Bhatt P, Shaw LM, Batmanghelich KN, Trojanowski JQ. Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiol Aging. 2010;32:19-27.
[11] de Vos F, Schouten TM, Hafkemeijer A, Dopper EG, van Swieten JC, de Rooij M, et al. Combining multiple anatomical MRI measures improves Alzheimer's disease classification. Hum Brain Mapp. 2016.
[12] Martijn P. van den Heuvel HEHP. Exploring the brain network: A review on resting-state fMRI functional connectivity. 2010;20:519–34.
[13] Khazaee A, Ebrahimzadeh A, Babajani-Feremi A. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer’s disease. Brain Imaging and Behavior. 2015:1-19.
[14] Khazaee A, Ebrahimzadeh A, Babajani-Feremi A. Identifying patients with Alzheimer’s disease using resting-state fMRI and graph theory. Clinical Neurophysiology. 2015;126:2132-41.
[15] Jack CR, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, et al. The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging. 2008;27:685-91.
[16] Chao-Gan Y, Yu-Feng Z. DPARSF: A MATLAB Toolbox for "Pipeline" Data Analysis of Resting-State fMRI. Front Syst Neurosci. 2010;4:13.
[17] Lu H, Zuo Y, Gu H, Waltz JA, Zhan W, Scholl CA, et al. Synchronized delta oscillations correlate with the resting-state functional MRI signal. Proceedings of the National Academy of Sciences. 2007;104:18265-9.
[18] Kelly A, Uddin LQ, Biswal BB, Castellanos FX, Milham MP. Competition between functional brain networks mediates behavioral variability. Neuroimage. 2008;39:527-37.
[19] Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341-55.
[20] Fischl B, Salat DH, van der Kouwe AJ, Makris N, Segonne F, Quinn BT, et al. Sequence-independent segmentation of magnetic resonance images. Neuroimage. 2004;23 Suppl 1:S69-84.
[21] Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, et al. A hybrid approach to the skull stripping problem in MRI. Neuroimage. 2004;22:1060-75.
[22] Fischl B, Liu A, Dale AM. Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging. 2001;20:70-80.
[23] Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, et al. Prediction of individual brain maturity using fMRI. Science. 2010;329:1358-61.
[24] Destrieux C, Fischl B, Dale A, Halgren E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage. 2010;53:1-15.
[25] Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52:1059-69.
[26] Haghighat M, Abdel-Mottaleb M, Alhalabi W. Discriminant correlation analysis: Real-time feature level fusion for multimodal biometric recognition. IEEE Transactions on Information Forensics and Security. 2016;11:1984-96.
[27] Krzanowski W. Principles of multivariate analysis: OUP Oxford; 2000.
[28] Turk M. Pentland. Eigenfaces for recognition. K Cogn Neurosci. 1991;4:72-86.
[29] Duda RO, Hart PE, Stork DG. Pattern classification: Wiley, New York; 1973.
[30] Sun Q-S, Zeng S-G, Liu Y, Heng P-A, Xia D-S. A new method of feature fusion and its application in image recognition. Pattern Recognition. 2005;38:2437-48.
[31] Binnewijzend MA, Adriaanse SM, Flier WM, Teunissen CE, Munck JC, Stam CJ, et al. Brain network alterations in Alzheimer's disease measured by Eigenvector centrality in fMRI are related to cognition and CSF biomarkers. Human brain mapping. 2014;35:2383-93.
[32] Madsen SK, Ho AJ, Hua X, Saharan PS, Toga AW, Jack C, et al. 3D maps localize caudate nucleus atrophy in 400 Alzheimer’s disease, mild cognitive impairment, and healthy elderly subjects. Neurobiology of aging. 2010;31:1312-25.
[33] Koivunen J, Scheinin N, Virta J, Aalto S, Vahlberg T, Någren K, et al. Amyloid PET imaging in patients with mild cognitive impairment A 2-year follow-up study. Neurology. 2011;76:1085-90.
[34] Ikonomovic MD, Klunk WE, Abrahamson EE, Mathis CA, Price JC, Tsopelas ND, et al. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer's disease. Brain. 2008;131:1630-45.
[35] Crystal HA, Horoupian DS, Katzman R, Jotkowitz S. Biopsy‐proved Alzheimer disease presenting as a right parietal lobe syndrome. Ann Neurol. 1982;12:186-8.
[36] Gao J-H, Parsons LM, Bower JM, Xiong J, Li J, Fox PT. Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science. 1996:545-7.