نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده‌ی مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران

2 استادیار، دانشکده‌ی مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران

3 دانشجوی دکتری، دانشکده‌ی مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران

چکیده

تولید و استفاده از وسایل تشخیصی-تحلیلی میکروسیالی، به ویژه وسایل تحلیلی میکروسیالی کاغذی (میکروپدها)، به دلیل مزایای فراوان آن‌ها، از جمله هزینه‌ی عملیاتی پایین، مصرف کم نمونه و عدم نیاز به مهارتی خاص برای استفاده و بازیافت یا دفع آسان، مورد استقبال زیادی قرار گرفته است. میکروپدها بدون نیاز به نیروی محرک خارجی، توانسته‌اند در تشخیص بسیاری از بیماری‌ها موفق ظاهر شوند. هدف این مقاله، توسعه‌ی یک میکرومیکسر برای تشخیص بر مبنای رنگ‌سنجی نیتریت موجود در بزاق به کمک واکنش گریس و افزایش بازه‌ی حد تشخیص دستگاه به کمک بهبود اختلاط می‌باشد. میکرومیکسرها پس از یک طراحی ساده، با برش لیزر ساخته شدند. در این کار، پنج هندسه‌ی متفاوت، شامل ساده، مارپیچ، زیگ‌زاگ، شکسته‌ی قائم و شکسته‌ی مایل، برای بخش اختلاط میکرومیکسر، به دو صورت تجربی و شبیه‌سازی، آزمایش و مقایسه شده‌اند. شبیه‌سازی با مدل جریان دوفازی همگن در محیط متخلخل، در نرم‌افزار انسیس سی‌اف‌اکس صورت گرفته است. نتایج نشان دادند که میکرومیکسر شکسته‌ی مایل نسبت به میکرومیکسر ساده، با بهبود 24/44 درصدی، بهترین عمل‌کرد را در آزمایش داشته، که حاصل آن محدوده‌ی خطی تشخیص صفر تا 1000 molL-1μ و حد تشخیص 7/5 molL-1μ شده است. بدین ترتیب، با توجه به تاثیر فراوان میکرومیکسرها در میکروسیالات، به کمک اصلاحات هندسی ساده، کیفیت اختلاط و در نتیجه دقت وسیله‌ی اندازه‌گیری افزایش داده شد.

کلیدواژه‌ها

عنوان مقاله [English]

Nitrite Colorimetric Detection in Saliva using Optimal Mixing

نویسندگان [English]

  • Elham Mollaei 1
  • Sasan Asiaei 2
  • Mahdi Moghimi 2
  • Ali Zadekafi 3

1 M.Sc Student, Mechanical Engineering Department, Iran University of Science and Technology, Tehran, Iran

2 Assistant Professor, Mechanical Engineering Department, Iran University of Science and Technology, Tehran, Iran

3 PhD Student, Mechanical Engineering Department, Iran University of Science and Technology, Tehran, Iran

چکیده [English]

Microfluidic analytical/diagnostic tools, especially microfluidic paper-based analytical devices ( PADs) have attracted considerable attention due to their numerous advantages including their low operational costs, small analyte consumption, and limited required skills for use, and easy disposal/recycling. μPADs have been successful in detection of various diseases with no external deriving units. The aim of this study is to develop a micromixer for colorimetric detection of nitrite in saliva using Griess reaction and widening the limit of detection (LOD) by mixing improvement. Micromixers were fabricated using laser cut after a simple design. Five different geometries were examined and compared including straight, curved, zigzag, square wave and hexagonal, by numerical simulation and experimental tests for mixing part in micromixer. Simulations were performed in ANSYS CFX with homogeneous two-phase flow model in a porous media. As the result inclined hexagonal micromixer showed the best performance (in comparison with the straight one) exhibiting 44.24% of improvement which leads to a detection range and LOD of  and , respectively. Considering the significant impact of micromixers in microfluidics, the quality of mixing and therefore the accuracy of the devices was improved by simple geometrical modifications.

کلیدواژه‌ها [English]

  • Nitrite
  • Saliva
  • Griess Method
  • Microfluidics Analytical Devices
  • Paper-based Micromixers
[1]     J. L. Osborn, B. Lutz, E. Fu, P. Kauffman, D. Y. Stevens, and P. Yager, “Microfluidics without pumps: reinventing the T-sensor and H-filter in paper networks,” Lab Chip, 2010.
[2]     P. Gravesen, J. Branebjerg, and O. S. Jensen, “Microfluidics-a review,” J. Micromechanics Microengineering, 1993.
[3]     N. Lopez-Ruiz et al., “Smartphone-based simultaneous pH and nitrite colorimetric determination for paper microfluidic devices,” Anal. Chem., 2014.
[4]     A. K. Yetisen, M. S. Akram, and C. R. Lowe, “Paper-based microfluidic point-of-care diagnostic devices,” Lab Chip, 2013.
[5]     A. W. Martinez et al., “Programmable diagnostic devices made from paper and tape,” Lab Chip, 2010.
[6]     E. Carrilho, A. W. Martinez, and G. M. Whitesides, “Understanding wax printing: A simple micropatterning process for paper-based microfluidics,” Anal. Chem., 2009.
[7]     B. M. Jayawardane, S. Wei, I. D. McKelvie, and S. D. Kolev, “Microfluidic paper-based analytical device for the determination of nitrite and nitrate,” Anal. Chem., 2014.
[8]     X. Li, D. R. Ballerini, and W. Shen, “A perspective on paper-based microfluidics: Current status and future trends,” Biomicrofluidics. 2012.
[9]     L. Capretto, W. Cheng, M. Hill, and X. Zhang, “Micromixing within microfluidic devices,” Top. Curr. Chem., 2011.
[10] A. R. Rezk, A. Qi, J. R. Friend, W. H. Li, and L. Y. Yeo, “Uniform mixing in paper-based microfluidic systems using surface acoustic waves.,” Lab Chip, 2012.
[11] T. M. G. Cardoso, P. T. Garcia, and W. K. T. Coltro, “Colorimetric determination of nitrite in clinical, food and environmental samples using microfluidic devices stamped in paper platforms,” Anal. Methods, 2015.
[12] World Health Organisation, “Oral health,” 2012.
[13] P. I. Reed, K. Haines, P. L. R. Smith, F. R. House, and C. L. Walters, “Gastric Juice N-Nitrosamines in Health and Gastroduodenal Disease,” Lancet, 1981.
[14] S. A. Klasner, A. K. Price, K. W. Hoeman, R. S. Wilson, K. J. Bell, and C. T. Culbertson, “Paper-based microfluidic devices for analysis of clinically relevant analytes present in urine and saliva,” Anal. Bioanal. Chem., 2010.
[15] D. Rupert, “Standard methods for the examination of water and wastewater,” no. December, 1912.
[16] M. C. Barciela Alonso and R. Prego, “Determination of silicate, simultaneously with other nutrients (nitrite, nitrate and phosphate), in river waters by capillary electrophoresis,” Anal. Chim. Acta, 2000.
[17] W. S. Jobgen, S. C. Jobgen, H. Li, C. J. Meininger, and G. Wu, “Analysis of nitrite and nitrate in biological samples using high-performance liquid chromatography,” Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2007.
[18] M. Badea, A. Amine, G. Palleschi, D. Moscone, G. Volpe, and A. Curulli, “New electrochemical sensors for detection of nitrites and nitrates,” J. Electroanal. Chem., 2001.
[19] S. A. Bhakta, R. Borba, M. Taba, C. D. Garcia, and E. Carrilho, “Determination of nitrite in saliva using microfluidic paper-based analytical devices,” Anal. Chim. Acta, 2014.
[20] L. Li, “Design Of Micromixer and Microfluidic Control System,” Florida Atlantic University, 2013.
[21] J. G. R. Ummadi, “Simultaneous Determination of Nitrate and Nitrite with a Paper-Based Microfluidic Device,” Tennessee Technological University, 2012.
[22] J. Sun, X. Zhang, M. Broderick, and H. Fein, “Measurement of Nitric Oxide Production in Biological Systems by Using Griess Reaction Assay,” Sensors, 2003.
[23] S. Akgo, M. Y. Arıca, H. So, and A. Denizli, “Composite Membranes for Fluoride Release,” Polymer (Guildf)., vol. 87, pp. 976–981, 2002.
[24] M. Jain, A. Rao, and K. Nandakumar, “Numerical study on shape optimization of groove micromixers,” Microfluid. Nanofluidics, 2013.
[25] J. M. Miranda, H. Oliveira, J. A. Teixeira, A. A. Vicente, J. H. Correia, and G. Minas, “Numerical study of micromixing combining alternate flow and obstacles,” Int. Commun. Heat Mass Transf., 2010.
[26] M. Hadigol, R. Nosrati, A. Nourbakhsh, and M. Raisee, “Numerical study of electroosmotic micromixing of non-Newtonian fluids,” J. Nonnewton. Fluid Mech., 2011.