نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده‌ی مهندسی برق، دانشگاه صنعتی شریف، تهران، ایران

2 استادیار، دانشکده‌ی مهندسی برق، دانشگاه صنعتی شریف، تهران، ایران

3 استادیار، دانشکده‌ی مهندسی برق، دانشگاه صنعتی شریف، تهران، ایران / دانشیار، دانشکده‌ی مخابرات و پردازش اطلاعات، دانشگاه گنت، گنت، بلژیک

چکیده

قرار­ گرفتن در وضعیت­های مختلف ادراکی، شناختی و احساسی با نوعی انتشار اطلاعات از طریق نوسانات نورون­های مغزی همراه است. بررسی این نوسانات و به طور مشخص­­­ ارتباطات و تعاملات میان بخش­های مختلف مغز، می­تواند اطلاعات مفیدی درباره­ی نحوه‌ی واکنش مغز در­ وضعیت­های مختلف حاصل نماید. ارتباطات بین نواحی مختلف مغز به سه دسته­ی ساختاری، موثر و کارکردی تقسیم‌بندی می­شوند. دسته­ی اول به ارتباط بین نورون­های نواحی مجاور می­پردازد، در حالی که دسته­ی دوم و سوم بر هم‌سانی زمانی بین نوسانات بخش­های نه لزوما مجاور تمرکز دارند. اگر چه سیگنال­های EEG به دلیل دقت مکانی نسبتا پایین، مناسب­ترین معیار برای سنجش ارتباطات کارکردی و موثر بین بخش­های مختلف مغز نیستند، اما بررسی آماری این سیگنال­ها می­تواند در تشخیص هم‌زمانی بین نوسانات نواحی مختلف مغز کمک قابل توجهی نماید. در این مقاله، چارچوبی نوین برای پیش­بینی وقوع تشنج با استفاده از سیگنال­های EEG ارائه شده که از معیار علیت گرنجر در حوزه­ی فرکانس برای اندازه­گیری میزان هم­زمانی نوسانات سیگنال­های EEG در زمان‌های Inter-ictal و Pre-ictal استفاده می­کند. در ادامه، با به کارگیری یک طبقه‌بند Logistic Regression با عبارت تنظیم‌کننده‌ی درجه‌ی اول به تفکیک نمونه‌های استخراج شده از این دو بازه‌ی زمانی از یک‌دیگر پرداخته شده است. در گام آخر، با در نظر گرفتن بازه‌های زمانی متوالی، در صورتی که به تعداد مشخصی بازه‌ی مربوط به Pre-ictal شناخته شود، وقوع تشنج اعلام می‌گردد. شبیه‌سازی‌های انجام شده روی مجموعه­ی داده­ی CHB-MIT به ازای افق پیش‌بینی 10 دقیقه به نرخ حساسیت 03/95% و نرخ پیش‌بینی نادرست 14/0 بر ساعت منتج شده است که نشان دهنده‌ی عمل‌کرد قابل قبول روش پیشنهادی در مقایسه با بهترین نتایج گزارش شده در سایر مقالات می‌باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Analysis of Brain Connectivity for Epileptic Seizure Prediction using EEG Signals

نویسندگان [English]

  • Saeed Ghodsi 1
  • Hoda Mohammadzade 2
  • Hamid Aghajan 3

1 M.Sc. Student, Electrical Engineering Department, Sharif University of Technology, Tehran, Iran

2 Assistant Professor, Electrical Engineering Department, Sharif University of Technology, Tehran, Iran

3 Assistant Professor, Electrical Engineering Department, Sharif University of Technology, Tehran, Iran / Associate Professor, Telecommunications and Information Processing Department, Ghent University, Ghent, Belium

چکیده [English]

Different perceptual, cognitive and emotional situations results in a kind of information flow in the brain by means of coordinated neuronal oscillations. Analysing these oscillations, especially synchronizations of different brain regions, can illustrate the brains response in the aforementioned situations. In the literature, connectivity between brain regions is divided into the three groups of structural, effective and functional, s.t. the first one refers to the connectivity between nearby regions, while the second and third ones focus on the synchronization of oscillations of arbitrary located regions. Although EEG is not the best choice for analyzing functional and effective connectivity between brain regions due to its relatively poor spatial resolution, extracting its statistical features may be helpful in the analysis of synchronization of brain oscillations. In this paper, a novel framework for the prediction of seizure occurrence using EEG signals is proposed which utilizes the Granger causality approach in frequency domain to measure synchronization of EEG signals in the Inter-ictal and Pre-ictal time periods. Afterwards, a Logistic Regression classifier with Lasso regularization is used to discriminate the samples extracted from these two periods. At last, if a predefined number of consecutive samples are labled as Pre-ictals, a seizure occurrence alarm is issued. Experimental simulations on the CHB-MIT dataset resulted in 95.03% sensitivity and 0.14/hour false prediction rate, for 10min prediction horizon, which demonstrates effectiveness of our proposed method compared to the state-of-the-arts.

کلیدواژه‌ها [English]

  • Computational Neuroscience
  • Seizure Prediction
  • Functional and Effective Connectivity
  • Machine Learning
[1]   K. J. Friston, "Functional and effective connectivity: a review," Brain connectivity, vol. 1, pp. 13-36, 2011.
[2]   S. S. Viglione and G. O. Walsh, "Proceedings: Epileptic seizure prediction.," Electroencephalography and clinical neurophysiology, vol. 39, p. 435, 1975.
[3]   D. S. Bassett and O. Sporns, "Network neuroscience," Nature neuroscience, 2017.
[4]   A. M. Bastos and J.-M. Schoffelen, "A tutorial review of functional connectivity analysis methods and their interpretational pitfalls," Frontiers in systems neuroscience, vol. 9, p. 175, 2016.
[5]   E. S. Finn, X. Shen, D. Scheinost, M. D. Rosenberg, J. Huang, M. M. Chun, X. Papademetris and R. T. Constable, "Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity," Nature neuroscience, 2015.
[6]   C. Stam, E. Van Straaten, E. Van Dellen, P. Tewarie, G. Gong, A. Hillebrand, J. Meier and P. Van Mieghem, "The relation between structural and functional connectivity patterns in complex brain networks," International Journal of Psychophysiology, 2016.
[7]   K. M. Tsiouris, V. C. Pezoulas, M. Zervakis, S. Konitsiotis, D. D. Koutsouris and D. I. Fotiadis, "A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals," Computers in biology and medicine, 2018.
[8]   M. Shahbazi and H. Aghajan, "A Generalizable Model for Seizure Prediction Based on Deep Learning Using CNN-LSTM Architecture," 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2018.
[9]   W. Singer, "Neuronal synchrony: a versatile code for the definition of relations?," Neuron, vol. 24, pp. 49-65, 1999.
[10]X.-J. Wang, "Neurophysiological and computational principles of cortical rhythms in cognition," Physiological reviews, vol. 90, pp. 1195-1268, 2010.
[11]H. E. Wang, C. G. Bénar, P. P. Quilichini, K. J. Friston, V. K. Jirsa and C. Bernard, "A systematic framework for functional connectivity measures," Frontiers in neuroscience, vol. 8, p. 405, 2014.
[12]V. Sakkalis, "Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG," Computers in biology and medicine, vol. 41, no. 12, pp. 1110--1117, 2011
[13]E. Van Diessen, T. Numan, E. Van Dellen, A. W. Van Der Kooi, M. Boersma, D. Hofman, R. Van Lutterveld, B. W. Van Dijk, E. C. W. Straaten, A. Hillebrand and others, "Opportunities and methodological challenges in EEG and MEG resting state functional brain network research," Clinical Neurophysiology, vol. 126, pp. 1468-1481, 2015.
[14]G. Nolte, O. Bai, L. Wheaton, Z. Mari, S. Vorbach and M. Hallett, "Identifying true brain interaction from EEG data using the imaginary part of coherency," Clinical neurophysiology, vol. 115, pp. 2292-2307, 2004.
[15]G. Nolte, A. Ziehe, V. V. Nikulin, A. Schlögl, N. Krämer, T. Brismar and K.-R. Müller, "Robustly estimating the flow direction of information in complex physical systems," Physical review letters, vol. 100, p. 234101, 2008.
[16]C. J. Stam, G. Nolte and A. Daffertshofer, "Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources," Human brain mapping, vol. 28, pp. 1178-1193, 2007.
[17]J.-P. Lachaux, E. Rodriguez, J. Martinerie and F. J. Varela, "Measuring phase synchrony in brain signals," Human brain mapping, vol. 8, pp. 194-208, 1999.
[18]M. Vinck, M. Wingerden, T. Womelsdorf, P. Fries and C. M. A. Pennartz, "The pairwise phase consistency: a bias-free measure of rhythmic neuronal synchronization," Neuroimage, vol. 51, pp. 112-122, 2010.
[19]C. W. J. Granger, "Investigating causal relations by econometric models and cross-spectral methods," Econometrica: Journal of the Econometric Society, pp. 424-438, 1969.
[20]Z. Zhou, M. Ding, Y. Chen, P. Wright, Z. Lu and Y. Liu, "Detecting directional influence in fMRI connectivity analysis using PCA based Granger causality," Brain Research, 2009.
[21]L. Pollonini, U. Patidar, N. Situ, R. Rezaie, A. C. Papanicolaou and G. Zouridakis, "Functional connectivity networks in the autistic and healthy brain assessed using Granger causality," 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 1730--1733, 2010.
[22]G. Deshpande, X. a. S. R. Hu and K. Sathian, "Effective connectivity during haptic perception: a study using Granger causality analysis of functional magnetic resonance imaging data," Neuroimage, vol. 40, no. 4, pp. 1807--1814, 2008.
[23]D. Marinazzo, W. a. C. H. Liao and S. Stramaglia, "Nonlinear connectivity by Granger causality," Neuroimage, vol. 58, pp. 330--338, 2011.
[24]M. Ding, Y. Chen and S. L. Bressler, "Granger causality: basic theory and application to neuroscience," in Handbook of time series analysis: recent theoretical developments and applications, 2006, pp. 437--460.
[25]S. L. Bressler and A. K. Seth, "Wiener--Granger causality: a well established methodology," Neuroimage, vol. 58, no. 2, pp. 323--329, 2011.
[26]K. Seth, A. B. Barrett and L. Barnett, "Granger causality analysis in neuroscience and neuroimaging," Journal of Neuroscience, pp. 3293--3297, 2015.
[27]S. Lashkari, M. A. Khalilzadeh and S. M. R. Hashemi Golpayegani, "Determination of the Degree of Three-dimensional Poincaré Section in Epileptic Seizure Detection by EEG," Iranian Journal of Biomedical Engineering, vol. 9, pp. 59-69, 2015.
[28]F. Mormann, R. G. Andrzejak, C. E. Elger and K. Lehnertz, "Seizure prediction: the long and winding road," Brain, vol. 130, pp. 314-333, 2006.
[29]Z. Rogowski, I. Gath and E. Bental, "On the prediction of epileptic seizures," Biological cybernetics, vol. 42, pp. 9-15, 1981.
[30]L. D. Iasemidis, J. C. Sackellares, H. P. Zaveri and W. J. Williams, "Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures," Brain topography, vol. 2, pp. 187-201, 1990.
[31]F. Mormann, K. Lehnertz, P. David and C. E. Elger, "Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients," Physica D: Nonlinear Phenomena, vol. 144, pp. 358-369, 2000.
[32]F. Mormann, R. G. Andrzejak, T. Kreuz, C. Rieke, P. David, C. E. Elger and K. Lehnertz, "Automated detection of a preseizure state based on a decrease in synchronization in intracranial electroencephalogram recordings from epilepsy patients," Physical Review E, vol. 67, p. 021912, 2003.
[33]F. Mormann, T. Kreuz, R. G. Andrzejak, P. David, K. Lehnertz and C. E. Elger, "Epileptic seizures are preceded by a decrease in synchronization," Epilepsy research, vol. 53, pp. 173-185, 2003.
[34]F. Mormann, T. Kreuz, C. Rieke, R. G. Andrzejak, A. Kraskov, P. David, C. E. Elger and K. Lehnertz, "On the predictability of epileptic seizures," Clinical neurophysiology, vol. 116, pp. 569-587, 2005.
[35]B. Hunyadi, M. Signoretto, W. Van Paesschen, J. A. K. Suykens, S. Van Huffel and M. De Vos, "Incorporating structural information from the multichannel EEG improves patient-specific seizure detection," Clinical Neurophysiology, vol. 123, pp. 2352-2361, 2012.
[36]K. Gadhoumi, J.-M. Lina, F. Mormann and J. Gotman, "Seizure prediction for therapeutic devices: A review," Journal of neuroscience methods, vol. 260, pp. 270-282, 2016.
[37]Y. Zheng, G. Wang, K. Li, G. Bao and J. Wang, "Epileptic seizure prediction using phase synchronization based on bivariate empirical mode decomposition," Clinical Neurophysiology, vol. 125, pp. 1104-1111, 2014
[38]M. Bandarabadi, C. A. Teixeira, J. Rasekhi and A. Dourado, "Epileptic seizure prediction using relative spectral power features," Clinical Neurophysiology, vol. 126, pp. 237-248, 2015.
[39]K. Gadhoumi, J.-M. Lina and J. Gotman, "Seizure prediction in patients with mesial temporal lobe epilepsy using EEG measures of state similarity," Clinical Neurophysiology, vol. 124, pp. 1745-1754, 2013.
[40]P. Mirowski, D. Madhavan, Y. LeCun and R. Kuzniecky, "Classification of patterns of EEG synchronization for seizure prediction," Clinical neurophysiology, vol. 120, pp. 1927-1940, 2009.
[41]P. Mierlo, M. Papadopoulou, E. Carrette, P. Boon, S. Vandenberghe, K. Vonck and D. Marinazzo, "Functional brain connectivity from EEG in epilepsy: Seizure prediction and epileptogenic focus localization," Progress in neurobiology, vol. 121, pp. 19-35, 2014.
[42]M. Le Van Quyen, J. Soss, V. Navarro, R. Robertson, M. Chavez, M. Baulac and J. Martinerie, "Preictal state identification by synchronization changes in long-term intracranial EEG recordings," Clinical Neurophysiology, vol. 116, pp. 559-568, 2005.
[43]M. Winterhalder, B. Schelter, T. Maiwald, A. Brandt, A. Schad, A. Schulze-Bonhage and J. Timmer, "Spatio-temporal patient--individual assessment of synchronization changes for epileptic seizure prediction," Clinical neurophysiology, vol. 117, pp. 2399-2413, 2006.
[44]G. Ouyang, X. Li, Y. Li and X. Guan, "Application of wavelet-based similarity analysis to epileptic seizures prediction," Computers in Biology and medicine, vol. 37, pp. 430-437, 2007.
[45]Osorio and Y.-C. Lai, "A phase-synchronization and random-matrix based approach to multichannel time-series analysis with application to epilepsy," Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 21, p. 033108, 2011.
[46]M. S. D. Kerr, S. P. Burns, J. Gale, J. Gonzalez-Martinez, J. Bulacio and S. V. Sarma, "Multivariate analysis of SEEG signals during seizure," in Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, 2011.
[47]S. Santaniello, S. P. Burns, A. J. Golby, J. M. Singer, W. S. Anderson and S. V. Sarma, "Quickest detection of drug-resistant seizures: An optimal control approach," Epilepsy & Behavior, vol. 22, pp. S49--S60, 2011.
[48]R. Williamson, D. W. Bliss, D. W. Browne and J. T. Narayanan, "Seizure prediction using EEG spatiotemporal correlation structure," Epilepsy & Behavior, vol. 25, pp. 230-238, 2012.
[49]Coito, C. M. Michel, P. Mierlo, S. Vulliémoz and G. Plomp, "Directed functional brain connectivity based on EEG source imaging: methodology and application to temporal lobe epilepsy," IEEE Transactions on Biomedical Engineering, vol. 63, pp. 2619-2628, 2016.
[50]D. Cho, B. Min, J. Kim and B. Lee, "EEG-based Prediction of Epileptic Seizures Using Phase Synchronization Elicited from Noise-Assisted Multivariate Empirical Mode Decomposition," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 25, pp. 1309-1318, 2017.
[51]H. Shoeb, "Application of machine learning to epileptic seizure onset detection and treatment," 2009.
[52]F. H. L. Silva and E. Niedermeyer, "Computer-assisted EEG diagnosis: pattern recognition and brain mapping," Electroencephalography: Basic Principles, Clinical Applications and Related Fields, 4th edition, pp. 1164-1189, 1998.
[53]F. Chella, V. Pizzella, F. Zappasodi and L. Marzetti, "Impact of the reference choice on scalp EEG connectivity estimation," Journal of neural engineering, vol. 13, p. 036016, 2016.
[54]P. L. Nunez, R. Srinivasan, A. F. Westdorp, R. S. Wijesinghe, D. M. Tucker, R. B. Silberstein and P. J. Cadusch, "EEG coherency: I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales," Clinical Neurophysiology, vol. 103, pp. 499-515, 1997.
[55]Geweke, "Measurement of linear dependence and feedback between multiple time series," Journal of the American statistical association, vol. 77, pp. 304-313, 1982.
[56]D. Chicharro, "On the spectral formulation of Granger causality," Biological cybernetics, vol. 105, pp. 331-347, 2011.
[57]N. D. Truong, A. D. Nguyen, L. Kuhlmann, M. R. Bonyadi, J. Yang and O. Kavehei, "Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram," Neural Networks, 2018.
[58]v. d. Maaten and G. Hinton, "Visualizing data using t-SNE," Journal of machine learning research, vol. 9, pp. 2579-2605, 2008.
[59]Winterhalder, T. Maiwald, H. Voss, R. Aschenbrenner-Scheibe, J. Timmer and A. Schulze-Bonhage, "The seizure prediction characteristic: a general framework to assess and compare seizure prediction methods," Epilepsy & Behavior, vol. 4, no. 3, pp. 318--325, 2003.
[60]Z. Zhang and K. K. Parhi, "Low-complexity seizure prediction from iEEG/sEEG using spectral power and ratios of spectral power," IEEE transactions on biomedical circuits and systems, vol. 10, no. 3, pp. 693--706, 2016.
[61]T. Maiwald, M. Winterhalder, R. Aschenbrenner-Scheibe, H. U. Voss, A. Schulze-Bonhage and J. Timmer, "Comparison of three nonlinear seizure prediction methods by means of the seizure prediction characteristic," Physica D: nonlinear phenomena, 2004.
[62]P. Detti, G. Z. M. de Lara, R. Bruni, M. Pranzo, F. Sarnari and G. Vatti, "A Patient-specific Approach for Short-term Epileptic Seizures Prediction through the Analysis of EEG synchronization," IEEE Transactions on Biomedical Engineering, 2018.
[63]H. Khan, L. Marcuse, M. Fields, K. Swann and B. Yener, "Focal onset seizure prediction using convolutional networks," IEEE Transactions on Biomedical Engineering, 2018.
[64]S. W. Ibrahim, R. Djemal, A. Alsuwailem and S. Gannouni, "Electroencephalography (EEG)-based epileptic seizure prediction using entropy and K-nearest neighbor (KNN)," Communications in Science and Technology, 2017.
[65]H. Chu, C. K. Chung, W. Jeong and K.-H. Cho, "Predicting epileptic seizures from scalp EEG based on attractor state analysis," Computer methods and programs in biomedicine, 2017.
[66]S. Cui, L. Duan, Y. Qiao and Y. Xiao, "Learning EEG synchronization patterns for epileptic seizure prediction using bag-of-wave features," Journal of Ambient Intelligence and Humanized Computing, 2018.
[67]Rahimi, M. H. Moradi and F. Ghassemi, "Brain Effective Connectivity Investigation With Directed Transform Function Method for Different Combination of Attention and Consciousness Based on EEG Signals," Iranian Journal of Biomedical Engineering, vol. 10, pp. 59-68, 2016.
[68]S. Davoodi and M. R. Daliri, "Evaluation of Phase Synchronization Approach using Phase Locking Value in Color Discrimination Task," Iranian Journal of Biomedical Engineering, vol. 11, pp. 265-273, 2017.