نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی پزشکی-بیوالکتریک، دانشکده‌ی مهندسی برق و کامپیوتر، دانشگاه تربیت مدرس، تهران، ایران

2 دانشیار، گروه مهندسی پزشکی-بیوالکتریک، دانشکده‌ی مهندسی برق و کامپیوتر، دانشگاه تربیت مدرس، تهران، ایران

10.22041/ijbme.2020.123742.1582

چکیده

اختلال طیف اوتیسم نوعی اختلال عصبی رشدی است که با اختلال در ارتباطات اجتماعی و رفتارهای محدود و تکراری تشخیص داده می‌شود. تصویربرداری تشدید مغناطیسیابزاری غیرتهاجمی و قدرتمند برای بررسی تغییرات در ساختار، عمل‌کرد و متابولیسم مغز کودکان مبتلا به اوتیسم و معرفی نشان‌گرهای زیستی مفید به شمار می­رود. مطالعه‌ی مقایسه­ای بین افراد مبتلا به اوتیسم و کنترل با استفاده از تصویربرداری تشدید مغناطیسی درک باارزشی از تفاوت در عمل‌کرد مغز فراهم می­کند. امروزه با استفاده از آنالیز ارتباطات عمل‌کردی پویا مشخص شده است که ارتباطات عمل‌کردی مغزی ماهیتی پویا داشته و الگوهایی گذرا (استیت) از خود نشان داده که در طی زمان تکرار می­شوند. در این مطالعه‌ی مقایسه­ای که بین دو گروه مبتلا به اوتیسم و کنترل انجام شده از داده‌های تصویربرداری تشدید مغناطیسی حالت استراحت دانشگاه ایالت سن‌دیگو استفاده شده است تا ارتباطات درون و بین شبکه­ای مغزی و هم‌چنین ارتباط سن و نمرات مربوط به پاسخ­دهی اجتماعی (نمره­ای برای اندازه­گیری خواص اوتیستیکی) با قدرت ارتباطات بین نواحی مورد بررسی قرار داده شود. این اهداف برای تمام استیت‌های آنالیز ارتباطات عمل‌کردی پویا اجرا شده است. افراد مبتلا به اوتیسم، استیتی با ارتباط درون و بین شبکه­ای کم‌تر را بیش‌تر تجربه کرده و هم‌چنین، کاهش جدایی شبکه‌ی مد پیش­فرض از سایر شبکه­های عمل‌کردی به عنوان یک ویژگی رایج در بیش‌تر استیت‌ها پدیدار شده است. برای گروه مبتلا به اوتیسم، با افزایش سن قدرت ارتباط بین شبکه­های بینایی و شنوایی کم‌تر شده است. هم‌چنین در گروه اوتیسم نسبت به کنترل، رابطه‌ی خواص اوتیستیکی با قدرت ارتباطی شبکه­های مخی، شنوایی و بینایی با شبکه‌ی شناختی-کنترلی مثبت­تر شده است. تمام این نتایج بیان‌گر تفاوت­هایی بین ارتباطات بین شبکه­های مغزی دو گروه مبتلا به اوتیسم و کنترل و تاثیر سن بر این تفاوت­ها است که این تفاوت­ها با کمک آنالیز ارتباطات عمل‌کردی پویا بهتر تمیز داده می­شوند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Extraction of Significant Differences between Autism Spectrum Disorder and Typically Control Groups through Brain Intra/Inter Network Connectivity Analyses in Transient States and by Considering Age and Social Responsiveness Score

نویسندگان [English]

  • Alireza Talesh Jafadideh 1
  • Babak Mohammadzadeh Asl 2

1 Ph.D. Student, Biomedical Engineering Department, Electrical and Computer Engineering Faculty, Tarbiat Modares University, Tehran, Iran

2 Associate Professor, Biomedical Engineering Department, Electrical and Computer Engineering Faculty, Tarbiat Modares University, Tehran, Iran.

چکیده [English]

Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder characterized by impaired social communication and restricted and repetitive behaviors. Comparison study between ASD and typically control (TC) subjects through magnetic resonance imaging (MRI) provides valuable understanding for differences in brain function. Recently, through dynamic functional connectivity (DFC) analysis, it is found that brain functional connectivity possesses dynamic nature and shows transient connectivity patterns (“states”) repeating over time. In this comparison study between ASD and TC, we employed the rest functional MRI (rfMRI) data of San Diego State University (SDSU) of ABIDE II database to examine the brain intra and inter network connectivity and also to investigate the relations of age and social responsiveness scale (SRS) score (score measuring autistic traits) to brain inter regions connectivity strength. These aims were implemented in all DFC states. The ASD subjects experienced more the state with less intra and inter network connections. Further, the DMN segregation reduction from other functional networks emerged as a common them. Furthermore, in ASD, the connection strength between auditory and visual networks was decreased by increasing the age. In ASD, the SRS had more positive relation to connectivity strength existing between cerebellar, auditory, visual networks and cognitive control network in comparison to TC. All these results demonstrate that some differences exist in brain network connection of ASD in comparison to the TC subjects and these differences can be more distinctively revealed by employing DFC analysis. 

کلیدواژه‌ها [English]

  • Rest Functional Magnetic Resonance Imaging (rfMRI)
  • Dynamic Functional Connectivity (DFC)
  • Autism Spectrum Disorder (ASD)
  • Typical Control (TC)
[1]   American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-5 (p. 947). Washington, DC: American Psychi-atric Association.
[2]   مختاری, بهناز، کریم زاده, بهناز. (2018). مروری بر بیماری اوتیسم با رویکردی بر مهمترین نشانگرهای زیستی. مجله علوم پزشکی رازی, 24(165), 35-46.‎
[3]   Zablotsky, B., Black, L. I., Maenner, M. J., Schieve, L. A., & Blumberg, S. J. (2015). Estimated prevalence of autism and other developmental dis- bilities following questionnaire changes in the 2014 National Health Interview Survey. National Health Statistics Reports, 87, 1–20.
[4]   Geschwind, D. H., & Levitt, P. (2007). Autism spectrum disorders: Devel-opmental disconnection syndromes. Current Opinion in Neurology, 17(1), 103–111.
[5]   Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews. Neuroscience, 8(9), 700–711. https://doi.org/10.1038/nrn2201.
[6]   Hull, J. V., Jacokes, Z. J., Torgerson, C. M., Irimia, A., & Van Horn, J. D. (2016). Resting-state functional connectivity in autism spectrum disorders: A review. Frontiers in Psychiatry, 7, 205.
[7]   Müller, R. A., Shih, P., Keehn, B., Deyoe, J. R., Leyden, K. M., & Shukla, D. K. (2011). Underconnected, but how? A survey of functional connectivity MRI studies in autism spectrum disorders. Cerebral Cortex, 21(10), 2233–2243. https://doi.org/10.1093/cercor/bhq296.
[8]   Hutchison, R. M., & Morton, J. B. (2015). Tracking the brain’s functional coupling dynamics over development. Journal of Neuroscience, 35(17), 6849–6859.
[9]   Vidaurre, D., Smith, S. M., & Woolrich, M. W. (2017). Brain network dynamics are hierarchically organized in time. Proceedings of the National Academy of Sciences of the United States of America, 114, 12827–12832. https://doi.org/10.1073/pnas.1705120114.
[10]Du, Y., Fryer, S. L., Fu, Z., Lin, D., Sui, J., Chen, J., Calhoun, V. D. (2017). Dynamic functional connectivity impairments in early schizophrenia and clinical high-risk for psychosis. NeuroImage, 180, 632–645. https://doi.org/10.1016/j.neuroimage.2017.10.022.
[11]Rashid, B., Damaraju, E., Pearlson, G.D., Calhoun, V.D., (2014). Dynamic connectivity states
estimated from resting fMRI identify differences among schizophrenia, bipolar disorder, and healthy control subjects. Front. Hum. Neurosci. 8.
[12]Wee, C. Y., Yap, P. T., & Shen, D. (2016). Diagnosis of autism spectrum disorders using temporally distinct resting-state functional connectivity networks. CNS Neuroscience & Therapeutics, 22(3), 212–219. https:// doi.org/10.1111/cns.12499.
[13]Chen, H., Nomi, J. S., Uddin, L. Q., Duan, X., & Chen, H. (2017). Intrinsic functional connectivity variance and state-specific under-connectivity in autism. Human Brain Mapping, 38, 5740–5755. https://doi.org/10. 1002/hbm.23764.
[14]Falahpour, M., Thompson, W. K., Abbott, A. E., Jahedi, A., Mulvey, M. E., Datko, M., Müller, R. A. (2016). Underconnected, but not broken? Dynamic functional connectivity MRI shows underconnectivity in autism is linked to increased intra-individual variability across time. Brain Connectivity, 6(5), 403–414. https://doi.org/10.1089/brain.2015.0389.
[15]Rashid, B., Blanken, L. M. E., Muetzel, R. L., Miller, R., Damaraju, E., Arbabshirani, M. R., et al. (2018). Connectivity dynamics in typical development and its relationship to autistic traits and autism spectrum disorder. Hum. Brain Mapp. 39, 3127–3142. doi: 10.1002/hbm.24064.
[16]Harlaka, V., Bapi. R, L., Vinod, P. K., Roy, D. (2019). Atypical Flexibility in Dynamic Functional Connectivity Quantifies the Severity in Autism Spectrum Disorder. Frontiers in Human Neuroscience, 6, 13. https://doi.org/10.3389/fnhum.2019.00006.
[17]Watanabe, T., and Rees, G. (2017). Brain network dynamics in high functioning individuals with autism. Nat. Commun. 8:16048. doi: 10.1038/ncomms16048.
[18]Abrol, A., Damaraju, E., Miller, R. L., Stephen, J. M., Claus, E. D., Mayer, A. R., & Calhoun, V. D. (2017). Replicability of time-varying connectivity patterns in large resting state fMRI samples. Neuroimage, 163, 160-176.
[21]Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage, 59(3), 2142-2154.
[22]Mash, L. E., Linke, A. C., Olson, L. A., Fishman, I., Liu, T. T., & Müller, R. A. (2019). Transient states of network connectivity are atypical in autism: A dynamic functional connectivity study. Human brain mapping, 40(8), 2377-2389.
[23]Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., & Calhoun, V. D. (2014). Tracking whole-brain connectivity dynamics in the resting state. Cerebral Cortex, 24(3), 663–676.
[24]Paternoster, R., Brame, R., Mazerolle, P., & Piquero, A. (1998). Using the correct statistical test for the equality of regression coefficients. Criminology, 36(4), 859-866.
[25]Abbott, A. E., Nair, A., Keown, C. L., Datko, M., Jahedi, A., Fishman, I., & Müller, R. A. (2016). Patterns of atypical functional connectivity and behavioral links in autism differ between default, salience, and executive networks. Cerebral Cortex, 26(10), 4034 4045. https://doi.org/10. 1093/cercor/bhv191.
[26]Yerys, B. E., Gordon, E. M., Abrams, D. N., Satterthwaite, T. D., Weinblatt, R., Jankowski, K. F., … Vaidya, C. J. (2015). Default mode network segrega- tion and social deficits in autism spectrum disorder: Evidence from nonmedicated children. NeuroImage. Clinical, 9, 223–232.
[27]Cerliani, L., Mennes, M., Thomas, R. M., Di Martino, A., Thioux, M., & Keysers, C. (2015). Increased functional connectivity between subcortical and cortical resting-state networks in autism spectrum disorder. JAMA Psychiatry, 72 (8), 767–777. https://doi.org/10.1001/jamapsychiatry.2015.0101.
[28]Delmonte, S., Gallagher, L., O'Hanlon, E., McGrath, J., & Balsters, J. H. (2013). Functional and structural connectivity of frontostriatal circuitry in autism spectrum disorder. Frontiers in Human Neuroscience, 7, 430. https://doi.org/10.3389/fnhum.2013.00430.
[29]Doyle‐Tomas, K. A. et al. (2015). Atypical functional brain connectivity during rest in autism spectrum disorders. Annals of neurology, 77.
[30]Jung, M. et al. (2014). Default mode network in young male adults with autism spectrum disorder: relationship with autism spectrum traits. Molecular autism, 5, 35.
[31]Dowd, A.M., McGinley, J.L., Taffe, J.R., Rinehart, N.J. (2012). Do planning and visual integration
difficulties underpin motor dysfunction in autism? A kinematic study of young children with autism.
Journal of autism and developmental disorders, 42, 1539-1548.
[32]Glazebrook, C., Gonzalez, D., Hansen, S., Elliott, D. (2009). The role of vision for online control of
manual aiming movements in persons with autism spectrum disorders. Autism, 13, 411-433.
[33]Shaw, E.E., Schultz, A.P., Sperling, R.A., Hedden, T. (2015). Functional connectivity in multiple cortical networks is associated with performance across cognitive domains in older adults. Brain Connectivity, 5, 505–516.
[34]Bathelt. J., Koolschijn, P. C., Geurts, H. M. (2020). Age-variant and age-invariant features of functional brain organization in middle aged and older autistic adults. Molecular Autism, 11, 9. 
[35]Eger, E., Moretti, L., Dehaene, S., Sirigu, A. (2013). Decoding the representation of learned social roles in the human brain. Cortex, 49, 2484–2493.
[36]Solomon, M., Ozonoff, S.J., Ursu, S., Ravizza, S., Cummings, N., Ly, S., et al. (2009). The neural substrates of cognitive control deficits in autism spectrum disorders. Neuropsychologia, 47, 2515–2526.
[37]Uddin, L.Q., Supekar, K., Lynch, C.J., Khouzam, A., Phillips, J., Feinstein, C., et al. (2013). Salience network–based classification and prediction of symptom severity in children with autism. JAMA Psychiatry, 70, 869–879.
[38]Elton, A., Di Martino, A., Hazlett, C. H, Gao, W. (2016). Neural Connectivity Evidence for a Categorical Dimensional Hybrid Model of Autism Spectrum Disorder. Biological Psychiatry, 80, 120-128.