نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 کارشناس ارشد، گروه مهندسی پزشکی، دانشکده مهندسی برق، دانشگاه صنعتی شریف

2 استادیار، گروه مهندسی پزشکی، دانشکده مهندسی برق، دانشگاه صنعتی شریف

10.22041/ijbme.2009.13383

چکیده

در این مقاله روشی برای تشخیص بیماری آلزایمر پیشنهاد شده است که با استفاده از تحلیل تصاویر MR مغزی، شامل دو گروه وزن دار با T1 و وزن دار با T2، افراد بیمار را شناسایی می کند. با توجه به تفاوت های ماهیتی میان تصاویر وزن دار باT1 و وزن دار با T2، ویژگی های متفاوتی را از آنها استخراج نموده، سپس با بررسی مقادیر ویژه حاصل از این ویژگی ها، ابعاد فضای آنالیز را کاهش دادیم و خروجی را به دو تفکیک کننده غیرخطی اعمال کردیم. بدین ترتیب به طور همزمان و موازی، تصاویر وزن دار با T1 و وزن دار با T2 تحلیل شدند. سپس چون بیماری آلزایمر بخش خاکستری و سفید مغز را بیش از قسمت های سیاه و حاشیه ای آن (مانند بخش هایی موسوم به برآمدگی های چین خورده مغز و همچنین سینوس ها) مورد هجوم قرار می دهد و همچنین با توجه به اینکه تصاویر وزن دار با T1 حاوی اطلاعات بخش خاکستری و سفید مغز و تصاویر وزن دار با T2 حاوی اطلاعات مربوط به بخش خاکستری و سیاه است، نتایج به دست آمده از تصاویر وزن دار با T1را به تصاویر وزن دار با T2 ارجحیت داده، وزن بیشتری را به آن اختصاص دادیم تا پاسخ نهایی حاصل شود. در این مقاله از 120 تصویر وزن دار با T1 و وزن دار با T2 شامل مقطع های مختلف مغزی استفاده شده است که بعد از انطباق، به دو بخش آموزشی و آزمون طبقه بندی شده اند. نتایج، حاکی از تشخیص صحیح حدود سه چهارم تصاویر است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Alzheimer's Disease Diagnosis Using Nonlinear Weighted T1-Mri Classification

نویسندگان [English]

  • Meysam Torabi 1
  • Emadoddin Fatemizadeh 2

1 M.Sc Graduated, Biomedical Engineering Group, Electrical Engineering School, Sharif University of Technology

2 Assistant Professor, Biomedical Engineering Group, Electrical Engineering School, Sharif University of Technology

چکیده [English]

In this paper, an MRI-based diagnosing approach has been proposed which simultaneously analyzes T1-MR and T2-MR images. The dataset contains 120 cross-sectional images of abnormal and also normal brains as control group. Due to inherent proprieties of T1 and T2 images and their principal differences, particular features have been extracted from each image. Then, more meaningful data has been structured by automatically eliminating redundant data and generating a semi-linear combination of the remaining features. Considering the fact that Alzheimer's disease mainly damages the gray and white matter of the brain and knowing that these parts of the brain can be more clearly observed in T1 images, the classifier which works under a nonlinear structure, allocates more weight for processing the T1 images comparing to T2 image. The images, after being registered, have been processed in two groups of training and test sets. According to the results, three forth of the dataset which was obtained from Harvard University's dataset (The Whole Brain Atlas) has been correctly diagnosed.

کلیدواژه‌ها [English]

  • Alzheimer's disease
  • Brain Images
  • Feature Extraction
  • Nonlinear Classifier
[1]     Venkataramanan S. and Kalpakam N. V., Aiding the Detection of Alzheimer's Disease in Clinical Electroencephalogram Recording by Selective Denoising of Ocular Artifacts, in Proc. of Int. Conf. Communications, Circ. & Sys., Jun 2004, pp. 965- 968.
[2]     Tang-Kai Y. and Nan-Tsing C., Discrimination between Alzheimer's Dementia & Controls by Automated Analysis of Statistical Parametric Maps of 99mTc-HMPAO-SPECT Volumes, in Proc. Of IEEE Int. Conf. Bioinf & Bioeng., May 2004, pp. 183-190.
[3]     Torabi M., Dehestani Ardekani R. and Fatemizadeh E., Discrimination between Alzheimer’s Disease and Control Group in MR-Images Based on Texture Analysis Using Artificial Neural Network, in Proc. of Int. Conf. Bio. & Pharm. Eng., Dec 2006, pp. 79- 83.
[4]     Torabi M., Moradzadeh H., Vaziri R., Razavian S., Ardekani R.D., Rahmandoust M., Taalimi A., Fatemizadeh E., Development of Alzheimer’s Disease Recognition Using Semiautomatic Analysis of Statistical Parameters Based on Frequency Characteristics of Medical Images, in Proc. of IEEE Int. Conf. Signal Proc. & Communication, Nov 2007, pp. 868-871.
[5]     Torabi M., Moradzadeh H., Vaziri R., Dehestani Ardekani R., Fatemizadeh E., Multiple Sclerosis Diagnosis Based on Analysis of Subbands of 2D Wavelet Transform, in Proc. of ACS/IEEE Int. Conf. Comp. Sys. & App., May 2007, pp. 717-721.
[6]     Dehestani Ardekani R., Torabi M. and E. Fatemizadeh, Breast Cancer Diagnosis and Classification in MR-images Using Multi-stage Classifier, in Proc. of Int. Conf. Bio. & Pharm. Eng., Dec 2006, pp.84-87.
[7]     Behnamghader E., Dehestani Ardekani R. and Torabi M., Another Approach to Detection of Abnormalities in MR-Images Using Support Vector Machines, in Proc. of 5th Int. Symp. Image & Signal Proc. & Analysis, Sep 2007, pp. 717-721.
[8]     Wang D., Rose S. E., Cowin G.J., Galloway G.J., Doddrell D.M., Chalk J.B., Regional Rates of Brain Atrophy - Can They be Used as a Reliable Tool for Early Diagnosis of Alzheimer’s Disease?, in Proc. of Joint 9th Int. Conf. IFSA World Congress & 20th NAFIPS, Vol.4, July 2001, pp. 1985-1990.
[9]     Hause L., Ho K.-C. and Dellis J., Microscopic Image Analysis in a Diagnostic System for  Alzheimer’s Disease, in Proc. Of 11th IEEE Int. Conf. Eng. Med. & Bio. Soc. Nov. 1999, pp. 345- 346.
[10] Martin J. and Pentland A. Characterization of Neuropathological Shape Deformation, IEEE Trans. Patt. Analy. & Machine Intell., 1998; 20(2):97-112.
[11] Hassainia F., Petit D., Gauthier S., Montplaisir J., Topographical Study of the Heterogeneity of Impairments in Early Alzheimer's Disease Patients, in Proc. of 17th IEEE Int. Conf. Eng. in Med. & Bio. Soc., Sep 1995, pp. 1009-1010.
[12] Abásolo D., Hornero R., Escudero J., Espino P., A Study on the Possible Usefulness of Detrended Fluctuation Analysis of the Electroencephalogram Background Activity in Alzheimer's Disease, IEEE Trans. Bio. Med. Eng., 2008; 55(9):2171-2179.
[13] Hornero R., Escudero J., Fernandez A., Poza J., Gomez C., Spectral and Nonlinear Analyses of MEG Background Activity in Patients With Alzheimer's Disease, IEEE Trans. Bio. Med. Eng., 2008; 55 (6): 1685-1665.
[14] Wan B. and et. al., Linear and Nonlinear Quantitative EEG Analysis, IEEE Eng. Med. Bio. Mag., 2008; 27 (5): 58-63.
[15] Bartoo G. T., Morphological Image Analysis for Studying Alzheimer’s Disease, in Proc. of Int. Conf. IEEE Eng. Med. & Bio. Soc., Nov 1998, pp. 370- 371.
[16] Bartoo G. T., Kim Y. and Chang D., Quantitative Imaging for Clinicopathological Correlates in Alzheimer Disease, in Proc. of IEEE EMBC & CMBEC, Sep 1995, pp. 501-502.
[17] Freeborough P. A. and Fox N. C., MR Image Texture Analysis Applied to the Diagnosis and Tracking of Alzheimer’s Disease, IEEE Trans. Med. Imaging, 1998; 17 (3): 475-479.
[18] Kovalev V.A., Kruggel F., Gertz H.-J., von Cramon D.Y., Three-Dimensional Texture Analysis of MRI Brain Datasets, IEEE Trans. Med. Imaging, 2001;  20 (5): 424-433.
[19] Morra J.H., Tu Z., Apostolova L.G., Green A.E., Toga A.W., Thompson P.M., Comparison of Adaboost and Support Vector Machines for Detecting Alzheimer’s Disease Through Automated Hippocampal Segmentation, IEEE Trans. Med. Imaging., 2010; 29 (1): 30-43.
[20] Duchesne S., Caroli A., Geroldi C., Barillot C., Frisoni G.B., Collins D.L., MRI-Based Automated Computer Classification of Probable AD Versus Normal Controls, IEEE Trans. Med. Imaging, 2008; 27 (4): 509–520.
[21] Laakso M.P., Soininen H., Partanen K., Lehtovirta M., Hallikainen M., Hänninen T., Helkala E.-L., Vainio P. and Riekkinen P.J., MRI of the Hippocampus in Alzheimer's Disease: Sensitivity, Specificity and Analysis of the Incorrectly Classified Subjects, Neurobiology of Aging, 1998; 19 (1): 23-31.
[22] Killiany R.J., Moss M.B., Albert M.S., Sandor T., Tieman J., Jolesz F., Temporal Lobe Regions on Magnetic Resonance Imaging Identify Patients with Early Alzheimer’s Disease, Arch. Neurol. 1993; 50 (1): 949–954.
[23] Johnson K.A., Becker J.A., the Whole Brain Atlas; Available on: www.med.harvard.edu/AANLIB/ home.html
[24] Hernandez M., Bossa M., and Olmos S., Registration of Anatomical Images Using Paths of Diffeomorphisms Parameterized with Stationary Vector Field Flows, Int. J. Computer Vision, 2009; 85(3):291-306.
[25] Bell A. J., and Sejnowski T. J., The Independent Components of Natural Scenes Are Edge Filters, Vision Research, 1997; 37 (23): 3327-3338.
[26] Yuen P.C. and Lai J. H. Independent Component Analysis of Face Images, in IEEE Workshop on Biologically Motivated Computer Vision., May 2000, pp. 545-553.
[27] Moghaddam B., Principal Manifolds and Bayesian Subspaces for Visual Recognition, in International Conference on Computer Vision., Corfu, Greece, 1999, pp. 1131-1136.
[28] Torabi M. and Fatemizadeh E., Nonlinear Discrimination of Weighted Brain's Gray and White Matter Images for Hierarchical Assessment of Alzheimer's Disease, in Proc. of The 14th Iranian Conference on Biomedical Engineering, Iran, Feb 2008, pp. 108-115.