نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 استادیارگروه الکترونیک و مخابرات، دانشکدة مهندسی، دانشگاه بیرجند

2 استاد دانشکدة مهندسی برق و کامپیوتر، دانشگاه تربیت مدرس

10.22041/ijbme.2007.13492

چکیده

سلول های ساده کورتکس اولیه بینایی به قطعات لبه یا خط دارای جهت مشخص موجود در میدان دریافتشان پاسخ شدید می دهند. در این مطالعه، با استفاده از مدل محاسباتی این سلول ها، روش جدیدی برای آشکارسازی لبه ارایه شده است. در این روش، ابتدا پاسخ های مربوط به مدل محاسباتی سلول ساده در تعدادی جهت ترجیحی مختلف محاسبه می شود و سپس بردار گرادیان شدت روشنایی در هر نقطه تصویر با محاسبه جمع وزندار این پاسخ ها به دست می آید. پارامترهای مربوط به مدل محاسباتی سلول ساده به گونه ای تنظیم شده که عملگر حاصل در آشکارسازی، تعیین دقیق موقعیت و پاسخ یگانه به لبه پله آغشته به نویز سفید گوسی به صورت بهینه عمل کند. مجموعه این عوامل و ویژگی های موجود در تصاویر پزشکی سبب گردید تا عملگر حاصل برای آشکارسازی لبه در تصاویر پزشکی مناسب باشد. به منظور ارزیابی کمی روش پیشنهادی، تصاویر ساختگی و پزشکی به همراه نقشه مرجع لبه های مربوط به این تصاویر مورد استفاده قرار گرفت. نتایج نشان داد که روش پیشنهادی در مقایسه با روش های مرسوم آشکارسازی لبه (نظیر روش کنی) از کارایی بهتری برخوردار بوده و در مقابل تغییرات پارامترهای ورودی پایدارتر است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

An Edge Detection Method Based On Computational Model Of Simple Cells In Primary Visual Cortex

نویسندگان [English]

  • Naser Mehrshad 1
  • Mohammad Hasan Ghasemian Yazdi 2

1 Assistant Professor, Electronic Department, Engineering School, Birjand University

2 Professor, Computer and Electronic Engineering School, , Tarbiat Modares University

چکیده [English]

Simple cells in primary visual cortex respond to the local, oriented edge segments within their receptive fields. In this study, we present a new edge detection method based on the computational model of these cells. Firstly, the response of a set of simple cells for a number of different preferred orientations are calculated. Then, the intensity gradient for each pixel is obtained using the linear summation of these responses. Some parameters of simple cell computational model are calculated in such a way that a set of goals (good detection, good localization and only one response to a single edge) achieving for the resulting operator. Considering the properties of medical images, the proposed operator is useful for medical image edge detection. The synthesis and medical images with their associated ground truth edge maps are used to assess performance of the proposed method. The results obtained from the proposed method are found to be better and more stable with respect to the input parameters than those from many well known edge detectors (e.g. Canny edge detector).

کلیدواژه‌ها [English]

  • Edge
  • Simple Cell
  • Primary Visual Cortex
  • Receptive Field
  • Gabor Filter
[1]     Canny J.; A computational approach to edge detection; IEEE Trans. Pattern Anal. Machine Intell. 1986; PAMI-8: 679-697.
[2]     Shen J. and Castan S.; An optimal linear operator for step edge detection; Graph. Models Image Process. 1992; 54(1): 112 133.
[3]     Rakesh R.R., Chaudhuri P., and Murthy C.A.; Thresholding in edge detection: a statistical approach; IEEE Trans. On Image Processing 2004; 13(7): 927- 936.
[4]     Parker J.R.; Algorithms for image processing and computer vision; New York: John Wiley & Sons; 1997; 1-66.
[5]     Gevers T.; Adaptive image segmentation by combining photometric invariant region and edge information; IEEE Trans. Pattern Anal. Machine Intell. 2002; 24(6): 848-852.
[6]     Eugenio F. and Marques F.; Automatic satellite image georeferencing using a contour-matching approach; IEEE Trans. On Georeference and Remote Sensing 2003; 41(12): 2869-2880.
[7]     Mahmud S., Williams L.R., Thornber K.K., and Xu K.; Segmentation of multiple salient closed contours from real images; IEEE Trans. Pattern Anal. Machine Intell. 2003; 25(4): 433-444.
[8]     Grigorescu C., Petcov N., Westenberg M.A.; Contour detection based on nonclassical receptive field inhibition; IEEE Trans. On Image Processing 2003; 12(7): 729-739.
[9]     Petcov N. and Westenberg M.A.; Suppression of contour perception by band-limited noise and its relation to non classical receptive field inhibition; Bio. Cybern 2003; 88: 236-246.
[10] Zhu C. and Jiang T.; Multi context fuzzy clustering for separation of brain tissues in magnetic resonance images; Academic Press, Nero Image 2003; 18: 685– 696.
[11] Rossi A.F., Desimone R., and Ungerleider G.; Contextual modulation in primary visual cortex of macaques; the Journal of Neuroscience 2001; 21(5): 1698-1709.
[12] Jones H.E., Grive K.L., Wang W., and Sillito A.M.; Surround suppression in primate V1; J. Neurophysiol. 2001; 86(10): 2011-2028.
[13] Nothdurf H.C., Gallant J.L., and Van Essen D.C.; Response modulation by texture surround in primate area v1: correlates of “pop out” under anesthesia; Vis. Neurosci. 1999; 16: 15-34.
[14] Li Zh.; Pre-attentive segmentation in the primary visual cortex; Spatial Vision 2000; 13(1): 25-50.
[15] Grigoresco S.E., Petkov N., and Kruizinga P.; Comparison of texture features based on Gabor filters; IEEE Trans. On Image Processing 2002; 11(10): 1160- 1167.
[16] Kruizinga P. and Petkov N.; Non-linear operator for oriented texture; IEEE Trans. On Image Processing 1999; 8(10): 1395 1407.
[17] Huble D.H.; Explorations of the primary visual cortex; Nature 1982; 229:515-524.
[18] Yitzhaky Y., Peli E.; A method for objective edge detection evaluation and detector parameter selection; IEEE Trans. On Pattern Analysis and Machine Intelligence 2003; 25(8): 1027-1033.
[19] Konishi S., Yuille A.L., Coughlan J. M., and Zhi S.C.; Statistical edge detection: learning and evaluating edge cues; IEEE Trans. On Pattern Analysis and Machine Intelligence 2003; 25(1): 57-74.