نوع مقاله : مقاله کامل پژوهشی
نویسندگان
1 شاهد
2 دانشجو ارشد مهندسی پزشکی
3 دانشگاه صنعتی شریف
چکیده
امروزه استفاده از سیستم رابط مغز و رایانه (BCI) مبتنی بر پتانسیلهای برانگیخته بینایی حالت ماندگار (SSVEP) به دلایلی همچون صحت قابلقبول و نیاز حداقلی به آموزش کاربر، رو به افزایش است. پتانسیلهای بینایی حالت ماندگار یکی از مهمترین الگوهای استفاده شده در سیستمهای BCI هستند که در ناحیه پسسری مغز و با تحریک بینایی بین 6 تا 60 هرتز تولید میشوند. یکی از روشهای کارا برای استخراج فرکانس SSVEP در سیستمهای BCI، روش تجزیه و تحلیل ضرایب همبستگی چندجهته (MCCA) نام دارد که تانسوریشده روش کلاسیک تجزیه و تحلیل ضرایب همبستگی (CCA) است و مبتنی بر دادههای چندبعدی است.
در این مقاله، با الهام از روش MCCA، دو الگوریتم جدید (PARAFAC-CCA و C-PARAFAC-CCA) با استفاده از ترکیب روش CCA و تجزیه تانسوری PARAFAC معرفی شدهاست که هدف الگوریتمهای پیشنهادی بهبود سیگنال مرجع اولیه و دستیابی به صحت بالاتر در تشخیص فرکانس SSVEP در سیستمهای BCI میباشد. در الگوریتم PARAFAC-CCA بعد از انجام تجزیه PARAFAC روی دادههای چندبعدی آموزش و بدست آوردن مولفه زمانی، روش CCA را بین مولفه زمانی بدست آمده و سیگنال مرجع سینوسی-کسینوسی پیادهسازی نموده و از خروجی آن، سیگنال مرجع بهینه ساخته میشود. در نهایت از الگوریتم MLR بین داده تست EEG و سیگنال مرجع بهینه به منظور دستیابی به فرکانس هدف استفاده میشود. مراحل کلی الگوریتم C-PARAFAC-CCA نیز مشابه PARAFAC-CCA بوده، با این تفاوت که در محاسبه مولفه زمانی از PARAFAC مقید استفاده میشود به این صورت که در هر گام از الگوریتم ALS یک بار CCA اعمالشده و مولفه زمانی بهبود داده میشود. کارایی الگوریتمهای ارائه شده بر روی مجموعه دادگان واقعی، مورد بررسی قرار گرفته و نشان داده شد که در مقایسه با روش MCCA، الگوریتمهای پیشنهادی به طور میانگین به صحت تشخیصی بالاتری رسیدهاند.
کلیدواژهها
- الکتروانسفالوگرام (EEG)
- رابط مغز و رایانه
- پتانسیل بینایی حالت ماندگار
- تجزیه و تحلیل همبستگی کانونی چندجهته
- تجزیه تانسوری PARAFAC
موضوعات
عنوان مقاله [English]
Frequency recognition in SSVEP-based BCIs using combination of PARAFAC decomposition and Canonical Component Analysis
نویسندگان [English]
- mohammad mikaili 1
- maryam farhadnia 2
- Sepideh Hajipour 3
1 استاد یار دانشگاه شاهد تهران
2 دانشجو ارشد مهندسی پزشکی دانشگاه شاهد تهران
3 Sharif University of Technology
چکیده [English]
Today, usage of brain-computer interface systems based on steady-state visual evoked potentials (SSVEPs) has been increased due to some advantages such as acceptable accuracy and minimal need for user training. Steady-state visual potentials are one of the most important patterns used in BCI systems, which are generated in the occipital region of the brain by visual stimulation between 6 and 60 Hz. One of the effective methods for extracting the SSVEP frequency in BCI systems is called the Multiway Correlation Coefficient Analysis (MCCA) method, which is a tensorized version of the classical Correlation Coefficient Analysis (CCA) method and is based on multidimensional data.
In this paper, inspired by the MCCA method, two new algorithms (PARAFAC-CCA and C-PARAFAC-CCA) have been proposed using the combination of CCA and PARAFAC decomposition. The purpose of the proposed algorithms is to improve the initial reference signal and achieve higher accuracy in SSVEP frequency detection in BCI systems. In the PARAFAC-CCA algorithm, after performing the PARAFAC decomposition on the multidimensional training data and obtaining the time component, the CCA method is implemented between the obtained time component and the sine-cosine reference signal, and the optimal reference signal is made from its output. Finally, the MLR algorithm is used between the EEG test data and the optimal reference signal in order to achieve the target frequency. The general steps of the C-PARAFAC-CCA algorithm are also similar to PARAFAC-CCA, with the difference that in the calculation of the time component, constrained PARAFAC is used in such a way that in each step of the ALS algorithm, CCA is applied once and the time component is improved. The efficiency of the proposed algorithms was investigated on the real data set and it was shown that compared to the MCCA method, the proposed algorithms have reached a higher average accuracy.
کلیدواژهها [English]
- Electroencephalogram (EEG)
- Brain-Computer Interface (BCI). Steady State Visual Evoked Potential (SSVEP)
- Multivariate Canonical Correlation Analysis (MCCA)
- PARAFAC decomposition